Three common food pathogenic microorganisms were exposed to treatments simulating those used in food processing. Treated cell suspensions were then analyzed for reduction in growth by plate counting. Flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) were carried out on treated cells stained for membrane integrity (Syto 9/propidium iodide) or the presence of membrane potential [DiOC 2 (3)]. For each microbial species, representative cells from various subpopulations detected by FCM were sorted onto selective and nonselective agar and evaluated for growth and recovery rates. In general, treatments giving rise to the highest reductions in counts also had the greatest effects on cell membrane integrity and membrane potential. Overall, treatments that impacted cell membrane permeability did not necessarily have a comparable effect on membrane potential. In addition, some bacterial species with extensively damaged membranes, as detected by FCM, appeared to be able to replicate and grow after sorting. Growth of sorted cells from various subpopulations was not always reflected in plate counts, and in some cases the staining protocol may have rendered cells unculturable. Optimized FCM protocols generated a greater insight into the extent of the heterogeneous bacterial population responses to food control measures than did plate counts. This study underlined the requirement to use FACS to relate various cytometric profiles generated by various staining protocols with the ability of cells to grow on microbial agar plates. Such information is a prerequisite for more-widespread adoption of FCM as a routine microbiological analytical technique.
Outbreaks of infections have emphasized the necessity for rapid and economic detection methods for pathogens in samples ranging from those of clinical origin to food products during production and retail storage, and increasingly, in environmental samples. Flow cytometry (FCM) allows the rapid acquisition of multi-parametric data regarding cell populations within fluidised samples. However, the application of FCM to pathogen detection depends on the availability of specific fluorescent probes such as antibodies and RNA probes capable of detecting and isolating pathogens from these diverse samples. A particular issue for FCM methodology is the ability to recover and discriminate bacteria from the sample matrix which may pose a major technical hurdle towards accurate and sensitive analysis. This review article focuses on detection of pathogens using FCM in samples originating from food, water, environmental and clinical sources and outlines the current state of the art and potential future applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.