ZnO-NPs can be obtained through various methods, resulting in nanoparticles with different size and morphology, which directly influences their antimicrobial potential. The objective of this work was to evaluate the antibacterial activity of ZnO-NPs obtained by a solochemical process against important human foodborne pathogens: Staphylococcus aureus, Salmonella Typhimurium, Bacillus cereus and Pseudomonas aeruginosa. ZnO-NPs were identified as nanorods with the length between 90.1 and 100 nm (10.5 % frequency), the diameter between 80.1 and 90 nm (21 % frequency), and wurtzite type crystalline structure. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were equal to 0.05 mg mL-1 and 0.5 mg mL-1 for S. aureus and S. Typhimurium, respectively, lower than previous results related in the literature. ZnO-NPs produced by solochemical method had a superior antibacterial activity. For instance, they can be incorporated in packaging materials for increasing microbial safety and food shelf-life by inhibiting bacterial growth.
One of the currently most important fungi in stored grains is Aspergillus flavus, which produce aflatoxins. This fungus can grow on diverse substrates and represents a serious public health and animal nutritional problem. Therefore, the study of techniques that can be applied to the control of aflatoxins is of great importance. The objective of the present study was to determine the effects of gamma radiation on the growth of Aspergillus flavus Link and on degradation of aflatoxin B1 and B2 (AFB1 and AFB2) at a relative humidity of 97 -99% and a water activity (Aw) of 0.88-0.94. Samples of corn grains were irradiated using a cobalt 60 source emitting gamma rays at doses of 2, 5 and 10 kGy. Irradiation was found to be effective in reducing the number colony-forming units of A. flavus, per gram, in the corn samples analyzed. In addition, the fluorescent viability test (fluorescein diacetate and ethidium bromide) revealed a decrease in the number of viable cells with increasing irradiation doses and three different fluorescence patterns. Furthermore, irradiation induced a partial reduction in AFB 1 and AFB 2 levels at the doses of 2 and 5 kGy, whereas complete degradation of aflatoxins was observed in the assay employing 10 kGy.
The present study evaluated the effect of aflatoxin B1 (AFB1) and fumonisin B1 (FB1) either alone, or in association, on rat primary hepatocyte cultures. Cell viability was assessed by flow cytometry after propidium iodine intercalation. DNA fragmentation and apoptosis were assessed by agarose gel electrophoresis and acridine orange and ethidium bromide staining. At the concentrations of AFB1 and FB1 used, the toxins did not decrease cell viability, but did induce apoptosis in a concentration and time-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.