Thermochromic displays, which were evaluated in this study, combine printed electronics with the thermochromism phenomenon. Conductive lines printed on the reverse side and thermochromic printing ink printed on the front side of cardboard packaging form a thermochromic display that gives cardboard packaging additional value. Displays were printed on different printing materials, and thermochromic printing ink was deposited in one and two layers. In addition, half of the samples were varnished. The influence of the printing material, the thickness of the thermochromic printing ink layer, the varnish, the high temperature, and light fastness on the display's operability were all evaluated. It was clearly shown that the choice of printing material plays a crucial role in the display's operability. Moreover, high temperature and light fastness also have a significant influence, although the impact is negligible when the display is used at room temperature.
The aim of our research was to investigate and optimise the main 3D printing process parameters that directly or indirectly affect the shape transformation capability and to determine the optimal transformation conditions to achieve predicted extent, and accurate and reproducible transformations of 3D printed, shape-changing two-material structures based on PLA and TPU. The shape-changing structures were printed using the FDM technology. The influence of each printing parameter that affects the final printability of shape-changing structures is presented and studied. After optimising the 3D printing process parameters, the extent, accuracy and reproducibility of the shape transformation performance for four-layer structures were analysed. The shape transformation was performed in hot water at different activation temperatures. Through a careful selection of 3D printing process parameters and transformation conditions, the predicted extent, accuracy and good reproducibility of shape transformation for 3D printed structures were achieved. The accurate deposition of filaments in the layers was achieved by adjusting the printing speed, flow rate and cooling conditions of extruded filaments. The shape transformation capability of 3D printed structures with a defined shape and defined active segment dimensions was influenced by the relaxation of compressive and tensile residual stresses in deposited filaments in the printed layers of the active material and different activation temperatures of the transformation.
3D printing is used to produce individual objects or to print on different substrates to produce multi-component products. In the textile industry, we encounter various 3D printing technologies in fashion design, functional apparel manufacturing (protective, military, sports, etc.), including wearable electronics, where textile material is functionalized. 3D printing enables the personalization of the product, which in the apparel industry can be transformed into the production of clothing or parts of clothing or custom accessories. Additive technology allows a more rational use of the material than traditional technologies. In the textile industry we meet different uses of it, one is the printing of flexible structures based on rigid materials, another is the printing with flexible materials and the third is the printing directly on textile substrate. All rigid, hard and soft or flexible materials can be integrated into the final design using 3D printing directly on the textile substrate. We speak of so-called multi-material objects and systems, which have many advantages, mainly in the increasing customization and functionalization of textiles or clothing. The article gives a broader overview of 3D printing on textiles and focuses mainly on the influence of different parameters of printing and woven fabric properties on the adhesion of 3D printed objects on the textile substrate. In our research we investigated the influence of twill weave and its derivate as well as different weft densities of the woven fabric on the adhesion of printed objects on textile substrate. Therefore, five samples of twill polyester/cotton fabrics were woven and their physical properties measured for this research. 3D objects were printed on textile substrates using the extrusion based additive manufacturing technique with polylactic acid (PLA) filament. Preliminary tests were carried out to define printing parameters and different methods of attaching the fabric to a printing bed were tested. T - Peel adhesion tests were performed on the Instron dynamometer to measure the adhesion between 3D printed objects and textile substrates.
The paper presents an interdisciplinary approach to the treatment of the FormaViva collection of wooden sculptures exhibited outdoors in a natural environment near the Božidar Jakac Art Museum in Kostanjevica na Krki in Slovenia. The study focuses on 3D graphic representations of sculptures created with photogrammetry and 3D modelling. The results are photorealistic renderings, interactive presentations, 3D printed reproductions, jewellery, and interpretive animations. The research results show that graphic documentation techniques on 3D models allow for a more detailed investigation of the original structural identity of the sculpture. By incorporating 3D and interactive technologies, we are expanding the usability of cultural heritage objects. By using interpretive techniques that have led to jewellery and interpretive animations in our research, we not only breathe new life into the sculptures, but also enrich the stories of the sculptures with our own experiences of the sculptural work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.