Artificial intelligence is getting more and more involved in our everyday life as a result of enormous amounts of data available for feeding the machine and deep learning algorithms. Deep learning introduced new dimensions and possibilities of applications in medical science. With COVID-19 outbreak in 2020 at global level, the health systems of many countries were overwhelmed. With many patients infected, health system is pressured to correctly diagnose patient's state of illness. In a lot of occasions, it was almost impossible to correctly diagnose many COVID-19 positive patients that have pneumonia due to many outbreaks in many areas. The intelligent system that could detect pneumonia with certainty could help in easing the pressure on the health system and make doctors focus on more severely ill patients. This paper describes development of pneumonia detection model using TensorFlow to processes the chest X-ray images to determine whether the patient has pneumonia. The model is based on deep learning algorithm supported through convolutional neural network. The model presented in this paper has achieved rather high accuracy (over 95%) in analyzing X-Ray images and could be used to speed up decision process in healthcare.
This research describes the use of high-performance computing (HPC) and deep learning to create prediction models that could be deployed on edge AI devices equipped with camera and installed in poultry farms. The main idea is to leverage an existing IoT farming platform and use HPC offline to run deep learning to train the models for object detection and object segmentation, where the objects are chickens in images taken on farm. The models can be ported from HPC to edge AI devices to create a new type of computer vision kit to enhance the existing digital poultry farm platform. Such new sensors enable implementing functions such as counting chickens, detection of dead chickens, and even assessing their weight or detecting uneven growth. These functions combined with the monitoring of environmental parameters, could enable early disease detection and improve the decision-making process. The experiment focused on Faster R-CNN architectures and AutoML was used to identify the most suitable architecture for chicken detection and segmentation for the given dataset. For the selected architectures, further hyperparameter optimization was carried out and we achieved the accuracy of AP = 85%, AP50 = 98%, and AP75 = 96% for object detection and AP = 90%, AP50 = 98%, and AP75 = 96% for instance segmentation. These models were installed on edge AI devices and evaluated in the online mode on actual poultry farms. Initial results are promising, but further development of the dataset and improvements in prediction models is needed.
This study aimed to investigate the application of machine learning techniques for disease prediction. Three popular machine learning algorithms, Random Forest, Support Vector Machines and Naive Bayes, were employed and their performance was evaluated. Results showed that the best performing model was based on Random Forest algorithm with the average accuracy of 87%. This model has been additionally tuned in order to achieve even better performance, which resulted with 90% accuracy. This study highlights the potential of AI in disease prediction and provides insights into the importance of algorithm selection and tuning for optimal performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.