Carnitine is essential for energy metabolism and spermatozoa maturation. Combining L‐carnitine and L‐acetylcarnitine with micronutrients has been investigated as a treatment for infertility in men. We evaluated the effects of a therapeutic formulation, Proxeed Plus, on sperm parameters in oligoasthenozoospermic men. This prospective, randomised, double‐blind, placebo‐controlled clinical trial involved 175 males (19–44 years) with idiopathic oligoasthenozoospermia who failed to impregnate their partners (12 months). Males received Proxeed Plus or placebo for 3 and 6 months. Sperm volume, progressive motility and vitality significantly (p < 0.001) improved after 6 months compared to baseline. Sperm DNA fragmentation index significantly decreased compared to baseline (p < 0.001) and the 3‐month therapy (p = 0.014) in treated men. Increased seminal carnitine and α‐glucosidase concentration also positively correlated with improved progressive motility. Decreased DNA fragmentation index was the good predictor of progressive sperm motility >10%, and simultaneous measurement of changes in sperm vitality and DNA fragmentation index gave the highest probability of sperm motility 10% (AUC = 0.924; 95% CI = 0.852–0.996; p < 0.001). Logistic regression analyses revealed DNA fragmentation index decrease as the only independent predictor of sperm motility 10% (OR = 1.106; p = 0.034). We have demonstrated the beneficial effects of carnitine derivatives on progressive motility, vitality and sperm DNA fragmentation. Combining metabolic and micronutritive factors is beneficial for male infertility.
TSS is acceptable from an oncological point of view, and it enables continuation of a patient's life without lifelong hormonal substitution. Additionally, local irradiation therapy could be delayed in patients with TIN who wish to father children, but with high local recurrence rate.
Progressive growth of metastatic Lewis lung carcinoma (LLC-LN7) tumors is associated with increased levels of bone-marrow-derived CD34+ cells having natural suppressor (NS) activity toward T cells. The present studies determined whether tumor-derived products are responsible for this induction of NS activity. Culturing normal bone marrow cells with LLC-LN7-conditioned medium (LLC-CM) or with recombinant granulocyte/macrophage-colony-stimulating factor (GM-CSF) resulted in the appearance of NS activity. The development of NS activity coincided with a prominent increase in the levels of CD34+ cells. That the CD34+ cells were responsible for the NS activity of the bone marrow cultures containing LLC-CM was shown by the loss of NS activity when CD34+ cells were depleted. The stimulation of CD34+ NS cells by LLC-CM was attributed to tumor production of GM-CSF, since neutralization of GM-CSF within the LLC-CM reduced its capacity to increase CD34+ cell levels. Studies also showed that the induction of CD34+ NS cells by LLC-CM and GM-CSF could be overcome by including in the cultures an inducer of myeloid differentiation, 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3]. These results demonstrate that the mechanism by which the LLC-LN7 tumors stimulate increased levels of CD34+ NS cells from normal bone marrow is by their production of GM-CSF and that this can be blocked with the myeloid differentiation inducer 1,25(OH)2D3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.