Process migration is the act of transferring a process between two machines. It enables dynamic load distribution, fault resilience, eased system administration, and data access locality. Despite these goals and ongoing research efforts, migration has not achieved widespread use. With the increasing deployment of distributed systems in general, and distributed operating systems in particular, process migration is again receiving more attention in both research and product development. As high-performance facilities shift from supercomputers to networks of workstations, and with the ever-increasing role of the World Wide Web, we expect migration to play a more important role and eventually to be widely adopted.
This survey reviews the field of process migration by summarizing the key concepts and giving an overview of the most important implementations. Design and implementation issues of process migration are analyzed in general, and then revisited for each of the case studies described: MOSIX, Sprite, Mach, and Load Sharing Facility. The benefits and drawbacks of process migration depend on the details of implementation and, therefore, this paper focuses on practical matters. This survey will help in understanding the potentials of process migration and why it has not caught on.
distributed platform, Java, resource constraints, mobile computing Many visions of the future predict a world with pervasive computing, where computing services and resources permeate the environment. In these visions, people will want to execute a service on any available device without worrying about whether the service has been tailored for the device. We believe that it will be difficult to create services that can execute well on the wide variety of devices that are being developed because of problems with diversity and resource constraints.We believe that these problems can be greatly reduced by using an ad-hoc distributed platform to transparently offload portions of a service from a resource-constrained device to a nearby server. We have implemented a preliminary prototype and emulator to study this approach. Our experiments show the beneficial use of nearby resources to relieve both memory and processing constraints, when it is appropriate to do so. We believe that this approach will reduce the burden on service developers by masking many of the details of device diversity, resource limitations, and resource fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.