Background: About 30% of cell lines have been cellular cross-contaminated and misidentification, which can result in invalidated experimental results and unusable therapeutic products. Cell morphology under the microscope was observed routinely, and further DNA sequencing analysis was performed periodically to verify cell line identity, but the sequencing analysis was costly, time-consuming, and labor intensive.The purpose of this study was to construct a novel artificial intelligence (AI) technology for "cell face" recognition, in which can predict DNA-level identification labels only using cell images.Methods: Seven commonly used cell lines were cultured and co-cultured in pairs (totally 8 categories) to simulated the situation of pure and cross-contaminated cells. The microscopy images were obtained and labeled of cell types by the result of short tandem repeat profiling. About 2 million patch images were used for model training and testing. AlexNet was used to demonstrate the effectiveness of convolutional neural network (CNN) in cell classification. To further improve the feasibility of detecting cross-contamination, the bilinear network for fine-grained identification was constructed. The specificity, sensitivity, and accuracy of the model were tested separately by external validation. Finally, the cell semantic segmentation was conducted by DilatedNet. Results:The cell texture and density were the influencing factors that can be better recognized by the bilinear convolutional neural network (BCNN) comparing to AlexNet. The BCNN achieved 99.5% accuracy in identifying seven pure cell lines and 86.3% accuracy for detecting cross-contamination (mixing two of the seven cell lines). DilatedNet was applied to the semantic segment for analyzing in single-cell level and achieved an accuracy of 98.2%. Conclusions:The deep CNN model proposed in this study has the ability to recognize small differences in cell morphology, and achieved high classification accuracy.
BACKGROUND In vitro human cell line models have been widely used for biomedical research to predict clinical response, identify novel mechanisms and drug response. However, one-fifth to one-third of cell lines have been cross-contaminated, which can seriously result in invalidated experimental results, unusable therapeutic products and waste of research funding. Cell line misidentification and cross-contamination may occur at any time, but authenticating cell lines is infrequent performed because the recommended genetic approaches are usually require extensive expertise and may take a few days. Conversely, the observation of live-cell morphology is a direct and real-time technique. OBJECTIVE The purpose of this study was to construct a novel computer vision technology based on deep convolutional neural networks (CNN) for “cell face” recognition. This was aimed to improve cell identification efficiency and reduce the occurrence of cell-line cross contamination. METHODS Unstained optical microscopy images of cell lines were obtained for model training (about 334 thousand patch images), and testing (about 153 thousand patch images). The AI system first trained to recognize the pure cell morphology. In order to find the most appropriate CNN model,we explored the key image features in cell morphology classification tasks using the classical CNN model-Alexnet. After that, a preferred fine-grained recognition model BCNN was used for the cell type identification (seven classifications). Next, we simulated the situation of cell cross-contamination and mixed the cells in pairs at different ratios. The detection of the cross-contamination was divided into two levels, whether the cells are mixed and what the contaminating cell is. The specificity, sensitivity, and accuracy of the model were tested separately by external validation. Finally, the segmentation model DialedNet was used to present the classification results at the single cell level. RESULTS The cell texture and density were the influencing factors that can be better recognized by the bilinear convolutional neural network (BCNN) comparing to AlexNet. The BCNN achieved 99.5% accuracy in identifying seven pure cell lines and 86.3% accuracy for detecting cross-contamination (mixing two of the seven cell lines). DilatedNet was applied to the semantic segment for analyzing in single-cell level and achieved an accuracy of 98.2%. CONCLUSIONS This study successfully demonstrated that cell lines can be morphologically identified using deep learning models. Only light-microscopy images and no reagents are required, enabling most labs to routinely perform cell identification tests.
Traffic sign detection and recognition (TSDR) plays crucial roles in advanced driving assistant system(ADAS). In this work, we propose an OpenCL parallelized TSDR method to address the time-consuming challenge. The method employs AdaBoost algorithm for traffic sign detection and Fisherface algorithm for the traffic sign recognition. The Haar feature extraction and Adaboost algorithm are accelerated by sliding windows paralleling and stage classifier group scheduling strategies. The results of experimental work reveal that our approach offers about 12x speed-up for 1920x1080 resolution, which effectively compress the computation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.