Traffic sign detection and recognition (TSDR) plays crucial roles in advanced driving assistant system(ADAS). In this work, we propose an OpenCL parallelized TSDR method to address the time-consuming challenge. The method employs AdaBoost algorithm for traffic sign detection and Fisherface algorithm for the traffic sign recognition. The Haar feature extraction and Adaboost algorithm are accelerated by sliding windows paralleling and stage classifier group scheduling strategies. The results of experimental work reveal that our approach offers about 12x speed-up for 1920x1080 resolution, which effectively compress the computation time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.