Make the switch: The three-enzyme cassette MarG/H/I is responsible for stereospecific biosynthesis of β-methyltryptophan from L-tryptophan (1). MarG/I convert 1 into (2S,3R)-β-methyltryptophan, while MarG/I combined with MarH convert 1 into (2S,3S)-β-methyltryptophan. MarH serves as a stereochemical switch by catalyzing the stereoinversion of the β-stereocenter.
BackgroundImportin-α1 belongs to a subfamily of nuclear transport adaptors and participates in diverse cellular functions. Best understood for its role in protein transport, importin-α1 also contributes to other biological processes. For instance, arsenite treatment causes importin-α1 to associate with cytoplasmic stress granules (SGs) in mammalian cells. These stress-induced compartments contain translationally arrested mRNAs, small ribosomal subunits and numerous proteins involved in mRNA transport and metabolism. At present, it is not known whether members of all three importin-α subfamilies locate to SGs in response to stress.ResultsHere, we demonstrate that the oxidant diethyl maleate (DEM), arsenite and heat shock, promote the formation of cytoplasmic SGs that contain nuclear transport factors. Specifically, importin-α1, α4 and α5, which belong to distinct subfamilies, and importin-β1 were targeted by all of these stressors to cytoplasmic SGs, but not to P-bodies. Importin-α family members have been implicated in transcriptional regulation, which prompted us to analyze their ability to interact with poly(A)-RNA in growing cells. Our studies show that importin-α1, but not α4, α5, importin-β1 or CAS, associated with poly(A)-RNA under nonstress conditions. Notably, this interaction was significantly reduced when cells were treated with DEM. Additional studies suggest that importin-α1 is likely connected to poly(A)-RNA through an indirect interaction, as the adaptor did not bind homopolymer RNA specifically in vitro. SignificanceOur studies establish that members of three importin-α subfamilies are bona fide SG components under different stress conditions. Furthermore, importin-α1 is unique in its ability to interact with poly(A)-RNA in a stress-dependent fashion, and in vitro experiments indicate that this association is indirect. Collectively, our data emphasize that nuclear transport factors participate in a growing number of cellular activities that are modulated by stress.
Streptonigrin (STN, 1) is a highly functionalized aminoquinone alkaloid with broad and potent antitumor activity. Here, we reported the biosynthetic gene cluster of STN identified by genome scanning of a STN producer Streptomyces flocculus CGMCC4.1223. This cluster consists of 48 genes determined by a series of gene inactivations. On the basis of the structures of intermediates and shunt products accumulated from five specific gene inactivation mutants and feeding experiments, the biosynthetic pathway was proposed, and the sequence of tailoring steps was preliminarily determined. In this pathway, a cryptic methylation of lavendamycin was genetically and biochemically characterized to be catalyzed by a leucine carboxyl methyltransferase StnF2. A [2Fe-2S](2+) cluster-containing aromatic ring dioxygenase StnB1/B2 system was biochemically characterized to catalyze a regiospecific cleavage of the N-C8' bond of the indole ring of the methyl ester of lavendamycin. This work provides opportunities to illuminate the enzymology of novel reactions involved in this pathway and to create, using genetic and chemo-enzymatic methods, new streptonigrinoid analogues as potential therapeutic agents.
The genus Streptomyces is a unique subgroup of actinomycetes bacteria that are well-known as prolific producers of antibiotics and many other bioactive secondary metabolites. Various environmental and physiological signals affect the onset and level of production of each antibiotic. Here we highlight recent findings on the regulation of antibiotic biosynthesis in Streptomyces by signaling molecules, with special focus on autoregulators such as hormone-like signaling molecules and antibiotics themselves. Hormone-like signaling molecules are a group of small diffusible signaling molecules that interact with specific receptor proteins to initiate complex regulatory cascades of antibiotic biosynthesis. Antibiotics and their biosynthetic intermediates can also serve as autoregulators to fine-tune their own biosynthesis or cross-regulators of disparate biosynthetic pathways. Advances in understanding of signaling molecules-mediated regulation of antibiotic production in Streptomyces may aid the discovery of new signaling molecules and their use in eliciting silent antibiotic biosynthetic pathways in a wide range of actinomycetes.
NEW ASSEMBLY LINE, NEW COMPOUND: SIA7248, a new symmetric macrolide, was isolated from a marine-derived Streptomyces strain. Bioinformatic analyses of the identified biosynthetic gene cluster (sia) for SIA7248 suggested a polyketide biosynthesis utilizing an iteratively trans-acting ketoreductase (KR). We characterized SiaM as a trans-KR to catalyse reductions of various β-ketoacyl-thioesters with D-stereospecificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.