Healthcare applications supported by the Internet of Things enable personalized monitoring of a patient in everyday settings. Such applications often consist of battery-powered sensors coupled to smart gateways at the edge layer. Smart gateways offer several local computing and storage services (e.g., data aggregation, compression, local decision making), and also provide an opportunity for implementing local closed-loop optimization of different parameters of the sensor layer, particularly energy consumption. To implement efficient optimization methods, information regarding the context and state of patients need to be considered to find opportunities to adjust energy to demanded accuracy. Edge-assisted optimization can manage energy consumption of the sensor layer but may also adversely affect the quality of sensed data, which could compromise the reliable detection of health deterioration risk factors. In this article, we propose two approaches: myopic and Markov decision processes (MDPs)-to consider both energy constraints and risk factor requirements for achieving a twofold goal: energy savings while satisfying accuracy requirements of abnormality detection in a patient's vital signs. Vital signs, including heart rate, respiration rate, and oxygen saturation, are extracted from a photoplethysmogram signal and errors of extracted features are compared to a ground truth that is modeled as a Gaussian distribution. We control the sensor's sensing energy to minimize the power consumption while meeting a desired level of satisfactory detection performance. We present experimental results on realistic case studies using a reconfigurable photoplethysmogram sensor in an IoT system, and show that compared to nonadaptive methods, myopic reduces an average of 16.9% in sensing energy consumption with the maximum probability of abnormality misdetection on the order of 0.17 in a 24-hour health monitoring system. In addition, over 4 weeks of monitoring, we demonstrate that our MDP policy can extend the battery life on average of more than 2x while fulfilling the same average probability of misdetection compared to the myopic method. We illustrate results comparing myopic, MDP, and nonadaptive methods to monitor 14 subjects over 1 month. CCS Concepts: • Theory of computation → Stochastic control and optimization;
Recent advances in pervasive Internet of Things technologies and edge computing have opened new avenues for development of ubiquitous health monitoring applications. Delivering an acceptable level of usability and accuracy for these healthcare Internet of Things applications requires optimization of both system-driven and data-driven aspects, which are typically done in a disjoint manner. Although decoupled optimization of these processes yields local optima at each level, synergistic coupling of the system and data levels can lead to a holistic solution opening new opportunities for optimization. In this article, we present an edge-assisted resource manager that dynamically controls the fidelity and duration of sensing w.r.t. changes in the patient’s activity and health state, thus fine-tuning the trade-off between energy efficiency and measurement accuracy. The cornerstone of our proposed solution is an intelligent low-latency real-time controller implemented at the edge layer that detects abnormalities in the patient’s condition and accordingly adjusts the sensing parameters of a reconfigurable wireless sensor node. We assess the efficiency of our proposed system via a case study of the photoplethysmography-based medical early warning score system. Our experiments on a real full hardware-software early warning score system reveal up to 49% power savings while maintaining the accuracy of the sensory data.
Recent advances in the Internet of Things (IoT) technologies have enabled the use of wearables for remote patient monitoring. Wearable sensors capture the patient's vital signs, and provide alerts or diagnosis based on the collected data. Unfortunately, wearables typically have limited energy and computational capacity, making their use challenging for healthcare applications where monitoring must continue uninterrupted long time, without the need to charge or change the battery. Fog computing can alleviate this problem by offloading computationally intensive tasks from the sensor layer to higher layers, thereby not only meeting the sensors' limited computational capacity but also enabling the use of local closed-loop energy optimization algorithms to increase the battery life. Furthermore, the patient's contextual information -including health and activity status -can be exploited to guide energy optimization algorithms more effectively. By incorporating the patient's contextual information, a desired quality of experience can be achieved by creating a dynamic balance between energy-efficiency and measurement accuracy. We present a run-time distributed control-based solution to find the most energy-efficient system state for a given context while keeping the accuracy of decision making process over a certain threshold. Our optimization algorithm resides in the Fog layer to avoid imposing computational overheads to the sensor layer. Our solution can be extended to reduce the probability of errors in the data collection process to ensure the accuracy of the results. The implementation of our fog-assisted control solution on a remote monitoring system shows a significant improvement in energy-efficiency with a bounded loss in accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.