The coordination ability of the pyridine derivative of cyclic triimidazole, namely 3-(pyridin-2-yl)triimidazotriazine (TT-Py) towards Cu(I) was explored. TT-Py is an appealing nitrogen-rich ligand characterized by the presence of three imidazole nitrogen atoms with trigonal symmetry and a pyridine moiety, available for coordination to metal ions. The multidentate nature of TT-Py allows to isolate, by reaction with CuI at room temperature, the one-dimensional coordination network [Cu2I2(TT-Py)]n (1). 1 is characterized by a rare structural network built-up by the combination in a 1:2 ratio of two common motifs for Cu(I) halides coordination polymers, which are the double-stranded stair and the zig-zag chain. 1 displays one broad long-lived emission in the solid state, which has been associated, by the support of DFT and TDDFT calculation, with low-energy transitions of MLCT or XMLCT character.
A new β-diketone ligand of nanometric length (HL), whose crystal structure shows a distance of 23 Å between two peripheral nitrile groups, has been employed with silver(I) to assemble 2D...
Cocrystallization of bis[1-(4-pyridyl)butane-1,3-dionato]copper(II) (1) complex and 1,4-diiodoperfluorobenzene in the presence of pyridine yields to a 1:1 cocrystal where both the σ and π-holes of 1,4-diiodoperfluorobenzene play a role. The crystal...
Mixed multidentate linkers with donor groups of different types can be fruitfully exploited in the self-assembly of coordination polymers (CPs) and Metal-Organic Frameworks (MOFs). In this work we develop new ligands containing a β-diketone chelating functionality, to better control the stereochemistry at the metal center, and tetrazolyl multidentate bridging groups, a combination not yet explored for networking with metal ions. The new ligands, 1,3-bis(4-(1H-tetrazol-5-yl)phenyl)-1,3-propanedione (H3L1) and 1-phenyl-3-(4-(1H-tetrazol-5-yl)phenyl)-1,3-propanedione (H2L2), are synthesized from the corresponding nitrile precursors by [2+3] dipolar cycloaddition of azide under metal-free catalytic conditions. Crystal structure analysis evidences the involvement of tetrazolyl fragments in multiple hydrogen bonding giving 2D and 1D supramolecular frameworks. Reactivity of the new ligands with different metal salts indicates good coordinating ability, and we report the preparation and structural characterization of the tris–chelate complex [Fe(HL1)3]3− (1) and the homometallic 2D CP [ZnL2(DMSO)] (2). In compound 1 only the diketonate donor is used, whereas the partially deprotonated tetrazolyl groups are involved in hydrogen bonding, giving rise to a 2D supramolecular framework of (6,3)IIa topological type. In compound 2 the ligand is completely deprotonated and uses both the diketonate donor (chelating) and the tetrazolate fragment (bridging) to coordinate the Zn(II) ions. The resulting neutral 2D network of sql topology shows luminescence in the solid state, which is red shifted with respect to the free ligand. Interestingly, it can be easily exfoliated in water to give a luminescent colloidal solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.