BackgroundHuman T-Lymphotropic Virus type 1 (HTLV-1) is a human oncoretrovirus that infects at least 5 to 10 million people worldwide and is associated with severe diseases. Africa appears as the largest HTLV-1 endemic area. However, the risk factors for the acquisition of HTLV-1 remain poorly understood in Central Africa.MethodsWe conducted an epidemiological survey between 2013 and 2017, in rural areas of 6 provinces of Gabon, in a rainforest environment. Epidemiological data were obtained and blood samples were collected after informed consent. Plasma were screened for HTLV-1 antibodies by ELISA and the positive samples were then tested by Western blot (WB). Genomic DNA derived from buffy-coat was subjected to two semi-nested PCRs amplifying either HTLV-1 env gene or LTR region fragments.ResultsWe recruited 2,060 individuals over 15 years old, including 1,205 men and 855 women (mean age: 49 years). Of these, 299 were found to be ELISA HTLV-1/2 seropositive. According to WB criteria, 136 were HTLV-1 (6.6%), 25 HTLV-1/2 (1.2%) and 9 HTLV seroreactive (0.4%). PCR results showed that 146 individuals were positive for at least one PCR: 104 for the env gene and 131 for the LTR region. Based on both serological and molecular results, 179 individuals were considered infected with HTLV-1, leading to an overall prevalence of 8.7%. The distribution of HTLV-1 infection was heterogeneous across the country. Based on multivariable analyses, female gender, increasing age, ethnicity (Pygmy) and multiple hospitalizations (more than 5 times) were found to be independent risk factors for HTLV-1 infection. Furthermore, a non-human primate bite appeared to be marginally associated with a higher risk of HTLV-1 infection.ConclusionBased on state-of-the-art serological and molecular methods, we have demonstrated that rural adult populations in Gabon are highly endemic for HTLV-1. Our results regarding risk factors should lead to public health actions aiming to reduce HTLV-1 transmission.
Human herpesvirus 8 (HHV-8) is the etiological agent of all forms of Kaposi’s sarcoma (KS). K1 gene studies have identified five major molecular genotypes with geographical clustering. This study described the epidemiology of HHV-8 and its molecular diversity in Gabon among Bantu and Pygmy adult rural populations and KS patients. Plasma antibodies against latency-associated nuclear antigens (LANA) were searched by indirect immunofluorescence. Buffy coat DNA samples were subjected to polymerase chain reaction (PCR) to obtain a K1 gene fragment. We studied 1020 persons; 91% were Bantus and 9% Pygmies. HHV-8 seroprevalence was 48.3% and 36.5% at the 1:40 and 1:160 dilution thresholds, respectively, although the seroprevalence of HHV-8 is probably higher in Gabon. These seroprevalences did not differ by sex, age, ethnicity or province. The detection rate of HHV-8 K1 sequence was 2.6% by PCR. Most of the 31 HHV-8 strains belonged to the B genotype (24), while the remaining clustered within the A5 subgroup (6) and one belonged to the F genotype. Additionally, we reviewed the K1 molecular diversity of published HHV-8 strains in Africa. This study demonstrated a high seroprevalence of HHV-8 in rural adult populations in Gabon and the presence of genetically diverse strains with B, A and also F genotypes.
Introduction Human T-cell lymphotrophic virus type-1 (HTLV-1) and human immunodeficiency virus (HIV-1) co-infection occur in many populations. People living with HIV-1 and infected with HTLV-1 seem more likely to progress rapidly towards AIDS. Both HTLV-1 and HIV-1 are endemic in Gabon (Central Africa). We investigated HTLV-1 and HIV-1 co-infection in the Haut-Ogooué province, and assessed factors that may favor the rapid evolution and progression to AIDS in co-infected patients. Methods Plasma samples from HTLV-1 patients were tested using ELISA, and positive samples were then tested by western blot assay (WB). We used the polymerase chain reaction to detect HTLV-1 Tax/Rex genes using DNA extracted from the buffy coat of ELISA-positives samples. Results We recruited 299 individuals (mean age 46 years) including 90 (30%) men and 209 (70%) women, all of whom are under treatment at the Ambulatory Treatment Centre of the province. Of these, 45 were ELISA HTLV-1/2 seropositive. According to WB criteria, 21 of 45 were confirmed positive: 20 were HTLV-1 (44%), 1 was HTLV-1/2 (2%), 2 were indeterminate (4%) and 22 were seronegative (49%). PCR results showed that 23 individuals were positive for the Tax/Rex region. Considering both serological and molecular assays, the prevalence of HTLV-1 infection was estimated at 7.7%. Being a woman and increasing age were found to be independent risk factors for co-infection. Mean CD4+ cell counts were higher in HTLV-1/HIV-1 co-infected (578.1 (± 340.8) cells/mm3) than in HIV-1 mono-infected (481.0 (± 299.0) cells/mm3) Individuals. Similarly, the mean HIV-1 viral load was Log 3.0 (± 1.6) copies/ml in mono-infected and Log 2.3 (± 0.7) copies/ml in coinfected individuals. Conclusion We described an overall high prevalence of HTLV-1/HIV-1 co-infection in Gabon. Our findings stress the need of strategies to prevent and manage these co-infections.
Pyrethroid resistance in major malaria vectors such as Anopheles funestus threatens malaria control efforts in Africa. Cytochrome P450-mediated metabolic resistance is best understood for CYP6P9 genes in southern Africa in An. funestus. However, we do not know if this resistance mechanism is spreading across Africa and how it relates to broader patterns of gene flow across the continent. Nucleotide diversity of the CYP6P9a gene and the diversity pattern of five gene fragments spanning a region of 120 kb around the CYP6P9a gene were surveyed in mosquitoes from southern, eastern and central Africa. These analyses revealed that a Cyp6P9a resistance-associated allele has swept through southern and eastern Africa and is now fixed in these regions. A similar diversity profile was observed when analysing genomic regions located 34 kb upstream to 86 kb downstream of the CYP6P9a locus, concordant with a selective sweep throughout the rp1 locus. We identify reduced gene flow between southern/eastern Africa and central Africa, which we hypothesise is due to the Great Rift Valley. These potential barriers to gene flow are likely to prevent or slow the spread of CYP6P9-based resistance mechanism to other parts of Africa and would to be considered in future vector control interventions such as gene drive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.