Jamaica is heavily dependent on fossil fuels to meet its energy demand and is currently seeking to reduce consumption. Accordingly, it is essential to investigate the expansion of renewable energy systems to achieve its 2030 renewable energy goal of 50%, with 70% diversification in energy types, as outlined in the National Energy Policy 2009–2030. This study explores biogas feasibility in Jamaica and discusses the potential for electricity generation from combinations of dairy cow and Swine feces with sugarcane bagasse. The study’s primary purpose is to assess the feasibility of biogas production from livestock manure and sugarcane bagasse for electricity generation and manure treatment. Findings reveal that biogas anaerobic digestion and the co-digestion of different varieties of animal manure with sugarcane bagasse can generate up to 122,607.68 MWh or 2.49% of Jamaica’s total electrical energy generation in 2019. The findings indicate a high potential for the installation of community-based plants. Moreover, considering all scenarios and the remaining feedstock, potential electrical energy increases to 222,868.60 MWh (4.53% of total energy generation). This power may be fed to the electrical grid network or consumed by local producers. In addition, electric power generation from animal manure and sugarcane bagasse is feasible with improved technical capability and human development. Additionally, anaerobic digestion and co-digestion of sugarcane bagasse plus animal manure offer an excellent solution to mitigate climate change.
Bangladesh has endured a significant power crisis as its economy grows. Hence, it is crucial to investigate the 40% expansion of renewable energy to attain the 2041 renewable energy goal as delineated by the government of Bangladesh. The study explores the current agricultural waste situation in rural areas of the Dinajpur District to propose a feasible alternative and integrated waste management system to meet the energy policy targets for animal waste and crop residues. It analyzed the spatial distribution of feedstocks, identified the optimal sites for the locations of biogas plants based on socioeconomic and environmental criteria and geographic information, and evaluated biogas production to satisfy electricity demand using geographic information system (GIS) suitability analysis and hotspot analysis by proposing six different scenarios. The results show that 2.81 million tons of total agricultural residues are sufficient to produce 11.31 million m3 per year of biogas in the study area. Furthermore, it is found that 21 biogas-based power plants using cattle manure and rice straw are spatially and technically feasible to produce 6389.14 kW of electrical energy per year, which meets 5.73% of the demand of the district in 2019. From the 6 proposed scenarios, number 4 can produce the maximum electricity, 3047.41 kW/year. The findings support the target of achieving a clean, green, sustainable energy system in Bangladesh while improving agricultural residue management. Estimating substrate availability and location is one of the first steps in promoting biogas-based energy from cattle manure and rice straw, which demands comprehensive technical, economic, and social policy reforms. Moreover, bioenergy expansion in Dinajpur District via biogasification represents a commitment to long-term investments in rural areas of Bangladesh.
To utilize wind energy, how it works, its value, and where the best locations are for extrapolation must be understood. A high-resolution wind atlas of Jamaica aids the understanding of the sociophysical phenomena leading to a better understanding of wind energy on the island. This study incorporates a mesoscale method with eight years of relevant data in ArcGIS 10.8.1 to derive then indicate sites for potential onshore wind power plants (WPP). It uses secondary and real-time data from domestic and international sources to evaluate economic, environmental, and sociotechnical criteria. The results indicate a high possibility for future wind power (WP) generation expansion since 2867.15 km2, 26% of the land is available. With the installation of Vestas V80 turbines, 62,818.71 GWh/year can be generated. Conversely, Vestas V112 turbine installation can produce 56,321.74 GWh/year of electrical energy. The average speed goes up to 12.5 miles per hour, while the power density of the 10% windiest areas is between 156.60 and 768.37 W/m2 at 50 m above ground, with several parishes having appropriate locations for WPPs. Thus, 29-point sites are identified in the study. However, St. Elizabeth and Manchester are most favorable, with mean wind speeds of 8.26 m/s and 10.08 m/s, respectively, in the excellently suitable zones. The research offers several advantages, which encompass the quantification of wind potential with and without prohibition, assessment of wind suitability on the island of Jamaica, reduction in environmental damage, and available data amelioration to aid better energy policy decisions, which will ensure a faster and easier transition from fossil fuel (FF) to renewable energy (RE) to meet Jamaica’s 2030 50% RE generation target. Specifically, the atlases will assist policymakers and WP developers in making informed decisions by reducing costs, time, and ambiguities to enhance the development of renewable energy use for electrical energy in Jamaica. The Geographical Information System (GIS), which is one of the most popular energy assessment tools, was utilized to derive suitable land zones of 24.41 to 26% for onshore wind farm development in Jamaica. It incorporates environmental, economic, social, safety, and technical criteria with underlining categorical variables as indicators to derive the quantitative values appropriate for Jamaica’s landscape and comparable to international studies with similar objectives. It found that unrestricted areas can theoretically generate up to 62,818 GWh per year of electrical energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.