Our aim is to investigate the role of the AKT/PKB (protein kinase B) signaling pathway acting via orexin receptor 1 (OX1R) and the effects of orexin A (OXA) on cell proliferation in the insulin-secreting beta-cell line (INS-1 cells). Rat INS-1 cells were exposed to different concentrations of OXA in vitro and treated with OX1R antagonist (SB334867), PI3K antagonist (wortmannin), AKT antagonist (PF-04691502), or negative control. INS-1 amount of cell proliferation, viability and apoptosis, insulin secretion, OX1R protein expression, caspase-3 activity, and AKT protein levels were determined. We report that OXA (10−10 to 10−6 M) stimulates INS-1 cell proliferation and viability, reduces the proapoptotic activity of caspase-3 to protect against apoptotic cell death, and increases insulin secretion. Additionally, AKT phosphorylation was stimulated by OXA (10−10 to 10−6 M). However, the OX1R antagonist SB334867 (10−6 M), the PI3K antagonist wortmannin (10−8 M), the AKT antagonist PF-04691502 (10−6 M), or the combination of both abolished the effects of OXA to a certain extent. These results suggest that the upregulation of OXA-OX1R mediated by AKT activation may inhibit cell apoptosis and promote cell proliferation in INS-1 cells. This finding provides functional evidence of the biological actions of OXA in rat insulinoma cells.
Coenzyme Q10 (CoQ10) is a fat‑soluble vitamin‑like substance used for the treatment of a variety of disorders, including osteoporosis. The exact mechanism underlying CoQ10‑mediated protection against osteoporosis remains to be elucidated. The present study aimed to evaluate the effect of CoQ10 on osteoblastic cell proliferation and differentiation, and therapeutic effects on a rat model of osteoporosis. Following treatment with different concentrations of CoQ10, cell proliferation and differentiation of rat bone marrow stromal cells (BMSCs), and expression of osteoblastogenic markers, were measured. Rats with osteoporosis subjected to ovariectomy (OVX) were treated with different concentrations of CoQ10. Serum levels of estrogen and bone metabolism markers were measured. Micro computed tomography scans were used to analyze morphological changes in bones. In addition, mRNA and protein levels of phosphatidylinositol 3,4,5‑trisphosphate 3‑phosphatase and dual‑specificity protein phosphatase PTEN (PTEN)/phosphatidylinositol 4,5‑bisphosphate 3‑kinase (PI3K)/RAC‑alpha serine/threonine‑protein kinase(AKT), were determined. CoQ10 significantly increased the proliferation and osteogenic differentiation of BMSCs in a dose‑dependent manner, with an increased expression of osteogenic markers. CoQ10 significantly decreased bone resorption but exhibited no effect on serum E2 levels in vivo. CoQ10 markedly enhanced bone formation. Furthermore, the abundance of p‑PI3K and p‑AKT increased while PTEN levels decreased in a dose‑dependent manner following administration of CoQ10. CoQ10 stimulates the proliferation and differentiation of BMSCs and is effective for the treatment of OVX‑induced osteoporosis in rats. The above effects of CoQ10 may be mediated by activation of the PTEN/PI3K/AKT pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.