A topological substructural molecular design approach (TOPS-MODE) has been used to formulate structural rules for binding of substrates of P-glycoprotein (P-gp). We first review some of the models developed in the recent literature for predicting binding to Pgp. Then, we develop a model using TOPS-MODE, which is able to identify 88.4% of substrates and 84.2% of non-substrates. When the model is presented to an external prediction set of 100 substrates and 77 nonsubstrates it identifies correctly 81.8% of all cases. Using TOPS-MODE strategy we found structural contributions for binding to P-gp, which identifies 24 structural fragments responsible for such binding. We then carried out a chemico-biological analysis of some of the structural fragments found as contributing to P-gp binding of substrates. We show that in general the model developed so far can be used as a virtual screening method for identifying substrates of P-gp from large libraries of compounds.
Time-dependent antibacterial activity of 2-furylethylenes using quantum chemical, topographic, and topological indices is described as inhibition of respiration in E. coli. A QSAR strategy based on the combination of the linear piecewise regression and the discriminant analysis is used to predict the biological activity values of strong and moderates antibacterial furylethylenes. The breakpoint in the values of the biological activity was detected. The biological activities of the compounds are described by two linear regression equations. A discriminant analysis is carried out to classify the compounds in one of the biological activity two groups. The results showed using different kind of descriptors were compared. In all cases the piecewise linear regression - discriminant analysis (PLR-DA) method produced significantly better QSAR models than the linear regression analysis. The QSAR models were validated using an external validation previously extracted from the original data. A prediction of reported antibacterial activity analysis was carried out showing dependence between the probability of a good classification and the experimental antibacterial activity. Statistical parameters showed the quality of quantum-chemical descriptors based models prediction in LDA having an accuracy of 0.9 and a C of 0.9. The best PLR-DA model explains more than 92% of the variance of experimental activity. Models with best prediction results were those based on quantum-chemical descriptors. An interpretation of quantum-chemical descriptors entered in models was carried ou
This report describes a new set of macromolecular descriptors of relevance to nucleic acid QSAR/QSPR studies, nucleic acids' quadratic indices. These descriptors are calculated from the macromolecular graph's nucleotide adjacency matrix. A study of the interaction of the antibiotic Paromomycin with the packaging region of the RNA present in type-1 HIV illustrates this approach. A linear discriminant function gave rise to excellent discrimination between 90.10% (91/101) and 81.82% (9/11) of interacting/noninteracting sites of nucleotides in training and test set, respectively. The LOO crossvalidation procedure was used to assess the stability and predictability of the model.
Int. J. Mol. Sci. 2004, 5 277Using this approach, the classification model has shown a LOO global good classification of 91.09%. In addition, the model's overall predictability oscillates from 89.11% until 87.13%, when n varies from 2 to 3 in leave-n-out jackknife method. This value stabilizes around 88.12% when n was > 3. On the other hand, a linear regression model predicted the local binding affinity constants [log K (10 -4 M -1 )] between a specific nucleotide and the aforementioned antibiotic. The linear model explains almost 92% of the variance of the experimental log K (R = 0.96 and s = 0.07) and LOO press statistics evidenced its predictive ability (q 2 = 0.85 and s cv = 0.09). These models also permit the interpretation of the driving forces of the interaction process. In this sense, developed equations involve short-reaching (k ≤ 3), middle-reaching (4 < k < 9) and far-reaching (k = 10 or greater) nucleotide's quadratic indices. This situation points to electronic and topologic nucleotide's backbone interactions control of the stability profile of Paromomycin-RNA complexes. Consequently, the present approach represents a novel and rather promising way to chem & bioinformatics research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.