Background: Ovarian cancer is the second most common gynecologic cancer with high mortality rate and generally diagnosed in advanced stages. The 5-year disease-free survival is below 40%. MicroRNAs, subset of the non-coding RNA molecules, regulate the translation in post transcriptional level by binding to specific mRNAs to promote or degrade the target oncogenes or tumor suppressor genes. Abnormal expression of miRNAs were found in numerous human cancer, including ovarian cancer. Investigating the miRNAs derived from the peripheral blood samples can be used as a marker in the diagnose, treatment and prognosis of ovarian cancer. We aimed to find biological markers for early diagnosis of ovarian cancer by investigating BRCA1 gene mutation carrier monozygotic discordant twins and their high risk healthy family individual's miRNAs. Methods: The study was conducted on monozygotic twins discordant for ovarian cancer, and the liquid biopsy exploration of miRNAs was performed on mononuclear cells that were isolated from the peripheral blood samples. The miRNA expression profile changes in the study were found by using microarray analysis. miRNA isolation procedure performed from the lymphocyte in accordance with the kit protocol. The presence and quality of the isolated miRNAs screened by electrophoresis. Raw data logarithmic analysis was studied by identifying the threshold, normalization, correlation, mean and median values. Target proteins were detected for each miRNA by using different algorithms. Results: After the comparison of monozygotic discordant twins for epithelial ovarian carcinoma upregulation of the 4 miRNAs, miR-6131, miR-1305, miR-197-3p, miR-3651 and downregulation of 4 miRNAs, miR-3135b, miR-4430, miR-664b-5p, miR-766-3p were found statically significant.
Ovarian cancer is a disease that is generally diagnosed at an advanced stage, and has poor survival. Monozygotic (MZ) twins are considered to be good research models for investigating the epigenetic changes associated with diseases. In the present study, the involvement of epigenetic mechanisms in ovarian cancer etiology were evaluated using the MZ twin model. Whole-genome methylation patterns were investigated in a BRCA1 gene mutation-carrying family comprising MZ twins, only one of whom had ovarian cancer, and other healthy siblings. Whole-genome methylation patterns were assessed in peripheral blood DNA using Infinium MethylationEPIC BeadChips on an Illumina iScan device. The hypermethylated and hypomethylated genes were detected between cases and controls in four different comparison groups in order to evaluate the differences in methylation levels according to cancer diagnosis and BRCA mutation status. The obtained results showed that the differential methylations in 12 different genes, namely PR/SET domain 6, cytochrome B5 reductase 4, ZNF714, OR52M1, SEMA4D, CHD1L, CAPZB , clustered mitochondria homolog, RB-binding protein 7, chromatin repair factor, ankyrin repeat domain 23, RIB43A domain with coiled-coils 1 and C6orf227 , were associated with ovarian cancer. Biological functional analysis of the genes detected in the study using the PANTHER classification system revealed that they have roles in biological processes including ‘biologic adhesion’, ‘regulation’, ‘cellular components organization’, ‘biogenesis’, ‘immune system functioning’, ‘metabolic functioning’ and ‘localization’. Overall, the present study suggested that epigenetic differences, such as methylation status, could be used as a non-invasive biological markers for the early diagnosis and follow-up of ovarian cancer.
Objectives Ovarian cancer is one of the most fatal gynecologic malignities. miR-16-5p, miR-17-5p, and miR-638 genes were found to have been associated with ovarian cancer in accordance with the data obtained from the previous microarray research performed by Tuncer et al. (J Ovarian Res 13(1):99, 2020). The expression levels of these miRNAs in the peripheral blood samples of 142 ovarian cancer patients, and 97 healthy controls were investigated for performing the validation, and to identify whether these genes were the possible biomarkers to be used in the early diagnosis of high-risk ovarian cancer patients, and in the prognosis of patients. Methods The miRNA expression analysis was performed using the miRNA-specific cDNA synthesis, and real-time PCR methods following the RNA isolation from the peripheral blood lymphocytes. Results miR-16-5p, miR-17-5p, and miR-638 miRNA gene expression levels were found to have twofold higher expression levels in patient groups compared with the gene expression levels in healthy controls, and were statistically significant (p < 0.05). In addition, the comparison of the miRNA expression levels with the clinical data of patients showed that there was a significant difference with smoking history and the increased expression level of miR-17-5 (p: 0.007). There was a significant difference between the increased expression level of miR-638 with the locally advanced stage, and abdominal/ pelvic metastatic patients (p: 0.03). Conclusions The obtained data suggest that miR-16-5p, miR-17-5p, and miR-638 molecules might be the noninvasive biomarkers in identifying the ovarian cancer. However, the investigation and monitoring of the changeability of these biomarkers in benign ovarian diseases, and during the treatment must be performed in future studies for identifying the accurate diagnostic, and prognostic features of miRNAs.
The most common gynecologic cancers detected in women in Turkey are uterine cancer, ovarian cancer, and cervical cancer. These data reported that a mean of 3800 individuals were diagnosed with uterine cancer, 2790 were diagnosed with ovarian cancer, and 1950 were diagnosed with cervical cancer, and 400 individuals were diagnosed with other gynecologic cancers each year in Turkey. A mean of 14.270 individuals were detected to have been diagnosed with gynecologic cancers each year in the United States of America (USA). Ovarian cancer treatment is generally composed of chemotherapy, and surgery. In general, chemotherapy is administered after surgery. The identification of the molecular pathogenesis of ovarian cancer, and discovery of new moleculer biomarkers which facilitate the ovarian cancer treatment are required for an effective ovarian cancer treatment in clinics. miRNAs are reported to be the possible biologic indicators for various cancer types. We aimed to investigate 2 miRNAs which were suggested to have effect in ovarian cancer in our (previous) monozygotic twin study from miR-1260 microRNA family whose association with ovarian cancer yet has not been reported in the literature. We investigated the expression levels of miR-1260a, and miR-1260b miRNAs, in the peripheral blood lymphocytes of 150 familial and sporadic ovarian cancer patients, and of 100 healthy individuals of the control group who were matched for age, sex, and ethnicity with the patient group, and investigated their possible property of being a biologic indicator for ovarian cancer. The expression results of ovarian cancer patients were evaluated by comparison of the results of the control group in the study. The expression levels of miR-1260a, and miR-1260b in ovarian cancer patients were found highly increased compared with the levels in the control group. miR-1260a expression level in ovarian cancer patients was detected to have increased approximately 17 fold compared with the control group, and miR-1260b expression level in ovarian cancer patients was detected to have increased approximately 33 fold compared with the levels in the control group. The String Analyses showed that the miR-1260a was associated with the ribosomal protein family which was known to be effective in the translation stage of cell and that miR-1260b was associated with CHEK2 protein which was a member of the serine/threonine-protein kinase family. It should be investigated for larger cohorts in benign ovarian diseases and in different stages of patients receiving ovarian cancer treatment whether these two molecules are a noninvasive biomarker and therapeutic target to be used especially in the early diagnosis and prognosis of ovarian cancer in future.
Purpose. Various molecular variations are known to result in different gene variants in the FGFR4 gene, known for its oncogenic transformation activity. The goal of this study was to investigate the FGFR4 p.Gly388Arg variant that plays role in the progression of cancer and retinal growth and may be an effective candidate variant in the Turkish population in retinoblastoma patients with no RB1 gene mutation. Methods. Using the Sanger sequencing methods, the FGFR4 p.Gly388Arg variant was bidirectionally sequenced in 49 patients with non-RB1 gene mutation in retinoblastoma patients and 13 healthy first-degree relatives and 146 individuals matched by sex and age in the control group. Results. In Turkish population-specific study, the FGFR4 p.Gly388Arg variant was found in 27 (55.1 percent) of 49 patients; mutation was found in 7 (53.8 percent) of these patients’ 13 healthy relatives screened. When FGFR4 p.Gly388Arg mutation status is evaluated in terms of 146 healthy controls, in 70 (47.9 percent) individuals, mutation was observed. Our analysis showed that the FGFR4 p.Gly388Arg allele frequency, which according to different databases is seen as 30 percent in the general population, is 50 percent common in the Turkish population. Conclusions. In patients with advanced retinoblastoma who were diagnosed with retinoblastoma prior to 24 months, the FGFR4 p.Gly388Arg allele was found to be significantly higher. As a result, these results indicate that the polymorphism of FGFR4 p.Gly388Arg may play a role in both the development of tumors and the progression of aggressive tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.