The springtime stratospheric ozone (O3) layer over the Antarctic is thinning by as much as 50 percent, resulting in increased midultraviolet (UVB) radiation reaching the surface of the Southern Ocean. There is concern that phytoplankton communities confined to near-surface waters of the marginal ice zone will be harmed by increased UVB irradiance penetrating the ocean surface, thereby altering the dynamics of Antarctic marine ecosystems. Results from a 6-week cruise (Icecolors) in the marginal ice zone of the Bellingshausen Sea in austral spring of 1990 indicated that as the O3 layer thinned: (i) sea surface- and depth-dependent ratios of UVB irradiance (280 to 320 nanometers) to total irradiance (280 to 700 nanometers) increased and (ii) UVB inhibition of photosynthesis increased. These and other Icecolors findings suggest that O3-dependent shifts of in-water spectral irradiances alter the balance of spectrally dependent phytoplankton processes, including photoinhibition, photoreactivation, photoprotection, and photosynthesis. A minimum 6 to 12 percent reduction in primary production associated with O3 depletion was estimated for the duration of the cruise.
Twelve species of Antarctic diatoms were studied to assess UV sensitivity in relation to cellular and molecular aspects of DNA damage and repair. Responses of cell survival, induction of DNA damage, and DNA repair capacity were determined. There was a wide range of interspecific UV‐sensitivity among diatoms. D37 values (average fluence to kill one cell) ranged from 681 J · m−2 (most sensitive) to 25,338 J · m−2 (most resistant). Molecular analysis (by radioimmunoassay) of UV‐induced DNA damage [induction of cys‐syn cyclobutane dimers and pyrimidine (6‐4) pyrimidone photoproducts] also revealed considerable variability among species [0.98–84 lesions · (108 daltons DNA)−1 induced by exposure to 2500 J · m−2]. Repair of DNA damage ranged from 0.18 to 2.72 lesions removed · (108 daltons DNA)−1 in 6 h; removal represented 0.72–73.5% of initial damage. Comparison of cellular responses associated with photoenhanced repair and nucleotide excision (“dark”) repair indicated that light‐mediated correction of UV damage was an important factor in cell survival. There was a relationship between the number of photoproducts induced and cell survival, but not between repair efficiency and survival. The data also indicate a general dependence of photoproduct induction and D37 values on cell size and shape (expressed as the surface area: volume ratio which ranged from 0.07 to 0.66 between species) and suggest that these factors are indicators of UV sensitivity. Smaller cells with greater surface area: volume ratios sustained more damage per unit of DNA, had lower D37 values, and were more sensitive to UV exposure. The wide species variations observed in molecular and cellular responses to UV exposure emphasize the ecological implications of changes in natural UV regimes. These changes can act as determinants of cell size and taxonomic structure within phytoplankton communities and have as yet unknown effects on trophic interactions within the Antarctic ecosystem.
Abstract.To investigate the natural defenses of Antarctic marine organisms against exposure to ultraviolet (UV) radiation (280 to 320 nm), 57 species (1 fish, 48 invertebrates, and 8 algae) were collected during austral spring 1988 in the vicinity of Palmer Station (Anvers Island, Antarctic Peninsula) and were analyzed for the presence of mycosporine-like amino acids (MAAs), compounds that absorb UV radiation and may provide shielding from these biologically hazardous wavelengths. Nearly 90% of the 57 species examined contained MAAs, and eight specific MAA compounds were identified. Seven of these (palythine, porphyra-334, shinorine, mycosporineglycine, palythene, asterina-330, and palythinol) have been observed previously in marine organisms from temperate and tropical latitudes. A new MAA, mycosporineglycine : valine, was found in the Antarctic fish and in 38 of the invertebrate species examined. This study confirms widespread occurrence of MAAs in Antarctic marine organisms and suggests that these species have some degree of natural biochemical protection from UV exposure.
The optical absorption, fluorescence excitation and emission, and photosynthetic action spectra were measured in vivo on intact colonies of Trichodesmium from the Caribbean Sea. The optical cross-sections were dominated by ultraviolet-A (UVA) absorption, which was a consequence of massive accumulations of mycosporinelike amino acids. The visible region of the spectrum was decomposed into several bands, among which chlorophyll a (Chl a), carotenoids, and individual phycobilipigments could be discerned. There was a clear diel periodicity in the ratio of the optical absorption cross-sections of phycourobilin (PUB) to phycoerythrobilin (PEB), increasing from around 1.7 at night to 2.1 at midmorning. The diel cycle in PUB/PEB is consistent with a reversible interconversion of the two pigments. The ratio of PUB/PEB was inversely correlated with the transfer of excitation energy to photosystem II (PSII). Light absorbed by PUB was not transferred to PSII with a high efficiency, but rather, a significant fraction was reemitted at 565 nm as fluorescence. These observations suggest that the PUBs and PEBs in Trichodesmium act as a dynamic biophysical energy valve that modify the rate of excitation energy delivered to PSII in response to changes in ambient light regime. The low-temperature (77 K) fluorescence emission spectra reveal an extremely weak 685-nm emission signal in relation to that at 730 nm. Based on a simple model, these data suggest that the ratio of PSI/PSII reaction centers in Trichodesmium is about 24 : 1. Such an extraordinary bias against PSII may help minimize damage to nitrogenase from O 2 production in PSII, but it also reduces the photosynthesis-enhanced growth and makes Trichodesmium virtually undetectable by chlorophyll fluorescence. The unique bio-optical properties of Trichodesmium can be used to develop algorithms to study its temporal and spatial distributions from remotely sensed information.Trichodesmium spp. is a genus of nonheterocystous, marine, diazotrophic (i.e., nitrogen fixing) cyanobacteria that form extensive blooms in oligotrophic tropical and subtropical seas. These organisms possess phycobilipigments with absorption peaks centered at 495, 545, and 565 nm (Fujita and Shimura 1974). The latter two peaks correspond to PEB, while the first corresponds to PUB, which is a modified form of PEB (Sidler 1994). The combination of all three optical 1 Present address: Chesapeake Biological Laboratory, P.O. Box 38, Solomons, Maryland 20688. AcknowledgmentsThis work was funded by the NASA Global Change Graduate Fellowship to A.S., NSF grants OCE 9317738 and DEB 9633744 to E.J.C., and DOE contract DE-AC02-76CH00016 to P.G.F. We thank Andrew Parrella for assistance in measurements and J. Zehr for ship time. A.S. thanks D. G. Capone for many stimulating discussions and encouragement. We gratefully acknowledge the help rendered by the masters and crew of the RVs Columbus Iselin and Seward Johnson, especially the electronic technicians and engineers on board. We thank Michael Wyman for assista...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.