Dengue is the most important human arboviral disease in Singapore. We classified residential areas into low‐rise and high‐rise housing and investigated the influence of urban drainage on the distribution of dengue incidence and outdoor breeding at neighborhood and country scales. In Geylang area (August 2014 to August 2015), dengue incidence was higher in a subarea of low‐rise housing compared to high‐rise one, averaging 26.7 (standard error, SE = 4.83) versus 2.43 (SE = 0.67) per 1,000 people. Outdoor breeding drains of Aedes aegypti have clustered in the low‐rise housing subarea. The pupal density per population was higher in the low‐rise blocks versus high‐rise ones, 246 (SE = 69.08) and 35.4 (SE = 25.49) per 1,000 people, respectively. The density of urban drainage network in the low‐rise blocks is double that in the high‐rise ones, averaging 0.05 (SE = 0.0032) versus 0.025 (SE = 0.00245) per meter. Further, a holistic analysis at a country‐scale has confirmed the role of urban hydrology in shaping dengue distribution in Singapore. Dengue incidence (2013–2015) is proportional to the fractions of the area (or population) of low‐rise housing. The drainage density in low‐rise housing is 4 times that corresponding estimate in high‐rise areas, 2.59 and 0.68 per meter, respectively. Public housing in agglomerations of high‐rise buildings could have a positive impact on dengue if this urban planning comes at the expense of low‐rise housing. City planners in endemic regions should consider the density of drainage networks for both the prevention of flooding and the breeding of mosquitoes.
Successful implementation of the sterile insect technique (SIT) against Aedes aegypti and Aedes albopictus relies on maintaining a consistent release of high-quality sterile males. Affordable, rapid, practical quality control tools based on the male’s flight ability (ability to escape from a flight device) may contribute to meeting this requirement. Therefore, this study aims to standardize the use of the original FAO/IAEA rapid quality control flight test device (FTD) (version 1.0), while improving handling conditions and reducing the device’s overall cost by assessing factors that could impact the subsequent flight ability of Aedes mosquitoes. The new FTD (version 1.1) is easier to use. The most important factors affecting escape rates were found to be tube color (or “shade”), the combined use of a lure and fan, mosquito species, and mosquito age and density (25; 50; 75; 100 males). Other factors measured but found to be less important were the duration of the test (30, 60, 90, 120 min), fan speed (normal 3000 rpm vs. high 6000 rpm), and mosquito strain origin. In addition, a cheaper version of the FTD (version 2.0) that holds eight individual tubes instead of 40 was designed and successfully validated against the new FTD (version 1.1). It was sensitive enough to distinguish between the effects of cold stress and high irradiation dose. Therefore, the eight-tube FTD may be used to assess Aedes’ flight ability. This study demonstrated that the new designs (versions 1.1 and 2.0) of the FTD could be used for standard routine quality assessments of Aedes mosquitoes required for an SIT and other male release-based programs.
In August 2008, a team from the National Environmental Agency conducted an entomological investigation of a chikungunya cluster in Singapore, with the primary aim of identifying the vector responsible for the outbreak and to assess the vector control operation. A total of 173 adult mosquitoes were caught using both the sweep-net method and the BG Sentinel Traps in and around the affected workers' quarters. Of these, 120 (69.4%) were Aedes albopictus and the rest were Culex quinquefasciatus. More than 2700 Ae. albopictus larvae were also collected from 33 breeding habitats detected. No Aedes aegypti was found. During the preintervention period, 6 (8.4%) out of 71 adult female Ae. albopictus were found positive for the chikungunya virus (CHIKV). Vector control measures resulted in a 90% reduction of adult Ae. albopictus caught by BG Sentinel Traps. Postintervention surveillance revealed the presence of CHIKV-positive mosquitoes. These findings led to continued intensive vector control operation in the affected area that further reduced vector population and interrupted the transmission of the disease. The E1 gene sequence of the CHIKV was identical to those of CHIKV isolated from human chikungunya cases working in the affected area, and contained the A226V mutation. The incrimination of Ae. albopictus as a major vector involved in the transmission of A226V CHIKV had led to the revision of chikungunya control strategy in Singapore. This study suggests the benefit of a vector control program that includes the evaluation of control measures in conjunction to virological surveillance in vector population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.