The PIWI protein regulates gene expression at the epigenetic and post-transcriptional level with a variety of endogenous small non-coding RNAs. In poultry, the biological function of the PIWI protein and PIWI binding to small RNAs had not been determined. The present study cloned and analyzed the sequences of the PIWIL1 protein. We also characterized PIWIL1 binding to small RNAs from adult quail testis, where the PIWIL1 protein is specifically expressed. Small RNAs showed a strong peak at 24–27 nt in the testicular RNA library, mapped primarily to repeat sequences and were similar to rasiRNAs. MicroRNAs (miRNAs) were abundant in the ovarian RNA library at a peak of 22 nt.
Salmonella enterica Enteritidis (S. Enteritidis) and Salmonella enterica Pullorum (S. pullorum) are regarded as a threat to poultry production. This study's aim is to characterize the expression profiles in response to three different challenges and to identify infection-related genes in the chicken spleen and caecum. Groups of the Chinese chicken breed Langshan were challenged with either S. Enteritidis, S. pullorum, or poly(I:C). The concentrations of cytokines and antibodies and the Salmonella colonization level of the caecum and liver were detected in each group at 7 days postinfection. Expression microarray experiments were conducted using mRNA isolated from both spleen and caecum. Crucial differentially expressed genes (DEGs) associated with immunity were identified. Four DEGs were identified in spleen of all three challenge groups (RBM16, FAH, SOX5, and RBM9) and different four genes in caecum (SOUL, FCN2, ANLN, and ACSL1). Expression profiles were clearly different among the three challenged groups. Genes enriched in the spleen of birds infected with S. pullorum were enriched in lymphocyte proliferation related pathways, but the enriched genes in the caecum of the same group were primarily enriched in innate immunity or antibacterial responses. The DEGs that appear across all three challenge groups might represent global response factors for different pathogens.
Bradysia odoriphaga (Diptera: Sciaridae) is a serious pest of Chinese chives cultivated in China. Chemosensory proteins (CSPs) are important components of insect olfactory systems that capture and bind environmental semiochemicals which are then transported to olfactory receptors. Despite their importance, the mechanism of olfaction and related behavioral processes in B. odoriphaga have not been characterized. Here, we found that BodoCSP4 has an important olfactory function. RT-qPCR indicated that BodoCSP4 expression was highest in the heads (antennae removed) of adult males, followed by the antennae of adult males. Competitive binding assays with 33 ligands indicated that BodoCSP4 binds well with methyl allyl disulfide, diallyl disulfide, and n-heptadecane; the corresponding dissolution constants (Ki) were as high as 5.71, 5.71, and 6.85 μM, respectively. 3D-structural and molecular docking indicated that BodoCSP4 has five α-helices and surrounds the ligand with certain hydrophobic residues including Leu60, Leu63, Leu64, Ala67, Val28, Ile30, Ile33, Leu34, and Val86, suggesting these residues help BodoCSP4 bind to ligands. Silencing of BodoCSP4 significantly decreased the attraction of B. odoriphaga males to diallyl disulfide and n-heptadecane but not to methyl allyl disulfide in Y-tube olfaction assays. These results increase our understanding of how BodoCSP4 contributes to host and female localization by B. odoriphaga males.
Piwi gene involves in the germline stem cells self-renewal, transposon silencing and post-transcriptional gene regulation in the majority of organisms; however, the biological function of Piwi gene in poultry remains unclear. Here we cloned the Piwi-like 1 (Piwil1) gene and characterized its expression in the Langshan chickens during the development. The results showed that the PIWIL1 protein was the homolog of mice MIWI and human HIWI proteins (100 % identity), and encoded a cytoplasmic protein including the two conserved domains PAZ and PIWI. In males, the expression of Piwil1 gene showed a bimodal distribution in the gonads during embryogenesis with peaks at embryonic 14.5 and 17.5-18.5 days respectively. After puberty, the expression of Piwil1 gene increased sharply and reached a high level at the sexual maturity. The mRNA expression of Piwil1 gene at 27 weeks of age is 35-40 times that of 0 week of age, indicating that the high expression of Piwil1 gene was essential to maintain the spermatogenesis. In females, the expression of Piwil1 gene showed a unimodal distribution in the embryonic gonads. A strong peak appeared at E16.5-17.5d when the primary oocytes have entered the prophase I of meiosis. Subsequently, the expression of Piwil1 gene decreased gradually and kept at the low level during the embryogenesis. So Piwil1 gene was likely to play an important role during the meiosis I. This report filled in partly the gap of the Piwi gene researches in poultry and defined our research directions in future.
Bradysia odoriphaga (Diptera: Sciaridae) is a major insect pest of seven plant families including 30 commercial crops in Asia. The long-term use of chemical pesticides leads to problems such as insect resistance, environmental issues, and food contamination. Against this background, a novel pest control method should be developed. In insects, odorant-binding proteins (OBPs) transport odor molecules, including pheromones and plant volatiles, to olfactory receptors. Here, we expressed and characterized the recombinant B. odoriphaga OBP BodoOBP10, observing that it could bind the sulfur-containing compounds diallyl disulfide and methyl allyl disulfide with Ki values of 8.01 μM and 7.00 μM, respectively. Homology modeling showed that the BodoOBP10 3D structure was similar to that of a typical OBP. Both diallyl disulfide and methyl allyl disulfide bound to the same site on BodoOBP10, mediated by interactions with six hydrophobic residues Met70, Ile75, Thr89, Met90, Leu93, and Leu94, and one aromatic residue, Phe143. Furthermore, silencing BodoOBP10 expression via RNAi significantly reduced the electroantennogram (EAG) response to diallyl disulfide and methyl allyl disulfide. These findings suggest that BodoOBP10 should be involved in the recognition and localization of host plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.