We analyze the exact two-soliton solution to the unperturbed nonlinear Schrödinger equation and predict that in a weakly perturbed system (i) soliton collisions can be strongly inelastic, (ii) inelastic collisions are of almost nonradiating type, (iii) results of a collision are extremely sensitive to the relative phase of solitons, and (iv) the effect is independent on the particular type of perturbation. In the numerical study we consider two different types of perturbation and confirm the predictions. We also show that this effect is a reason for chaotic soliton scattering. For applications, where the inelasticity of collision, induced by a weak perturbation, is undesirable, we propose a method of compensating it by perturbation of another type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.