Images directes cohomologiques dans les catégories de modèlesDenis-Charles Cisinski
RésuméCes notes sont consacrées à la construction des limites homotopiques, et plus généralement, des images directes cohomologiques dans une catégorie de modèles arbitraire admettant des petites limites projectives. En outre, la théorie des dérivateurs de Grothendieck est introduite, à la fois en tant que motivation pour l'étude de telles structures, et en tant qu'outil de démonstration.
Abstract. We establish a Quillen equivalence relating the homotopy theory of Segal operads and the homotopy theory of simplicial operads, from which we deduce that the homotopy coherent nerve functor is a right Quillen equivalence from the model category of simplicial operads to the model category structure for ∞-operads on the category of dendroidal sets. By slicing over the monoidal unit, this also gives the Quillen equivalence between Segal categories and simplicial categories proved by J. Bergner, as well as the Quillen equivalence between quasi-categories and simplicial categories proved by A. Joyal and J. Lurie. We also explain how this theory applies to the usual notion of operad (i.e. with a single colour) in the category of spaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.