Clinching is a manufacturing method of mechanically joining two or more materials without the use of heat or additional components. This process relies on high plastic deformation to create a secure bond. Clinching technology is widely used for joining materials of various grades and thicknesses. Especially in the automotive industry, clinching is an alternative to resistance spot welding. However, the load-bearing capacity of clinched joints is comparatively lower when compared to resistance spot-welded joints. This research aimed to increase the load-carrying capacity of clinched joints. To enhance the load-bearing capacity of the clinched joints, localized modification of the microstructure was carried out, primarily focusing on the neck area of the joint. The alteration of the microstructure within the clinched joint was accomplished through the application of localized heating using the resistance spot welding method. The microstructure distribution in the clinched joint region was analyzed using light and scanning electron microscopy, as well as microhardness measurements. Two material grades, micro-alloyed steel HX420LAD+Z and dual-phase ferritic–martensitic steel HCT600X+Z, were tested. Each grade underwent five groups of ten samples, which were subjected to identical experimental conditions of local heating by resistance spot welding (RSW) and clinching. The utilization of RSW on the clinched joint region resulted in an average enhancement of 17% in the load-carrying capacity for material HCT600X+Z, and an average increase of 25% for material HX420LAD+Z.
The paper focuses on the possibility of HPDC molds restoration for aluminium casting by laser and MAG weld cladding with a welding wire of the same grade like the base material. A chemical analysis of the weld deposits showed a decrease in the content of some elements in the MAG deposit due to the higher thermal input to the weld bath. The lower heat input of laser welding has resulted in a higher incidence of fusion defects lack between the weld deposit and the base material. Thermal conditions during welding affected hardness of weld deposits and their abrasive resistance as well. The resistance of materials against dissolution when immersed in AlSi8Cu3 alloy was similar for both deposits and the base metal.
The automotive industry is characterized by the fact that it uses an entire range of materials. These are materials with different mechanical properties, thicknesses, and even different combinations. A variety of joining methods, such as clinching, is used to join this range of materials. However, sometimes it is necessary to combine several methods of joining materials. The paper deals with the evaluation of the properties of joints, which are created by a combination of mechanical joining and adhesive bonding. Two types of adhesives were used: adhesive based on epoxy resin and adhesive based on acrylate polymers. Double-sided hot-dip galvanized steel sheets DX53D+Z with a thickness of 0.8 mm were used to join with this combination of joining techniques. Numerical simulation tools were used to assess the joinability of materials. The simulation results were verified by the results from the experiments of real test samples. Samples joined by the clinching method combined with epoxy resin adhesives achieved higher load-bearing values and no cracks or any other type of failures were observed in these joints.
Nowadays, there are several important reasons for using high-strength sheets in the manufacturing of car bodies. Car manufacturers choose the steel with good formability, fatigue resistance and ability to absorb impact energy. Microalloyed steels and dual-phase steels are the materials which fulfil the above-mentioned criteria. The application of high-strength sheets has led to the development of new materials joining techniques. Mechanical joining, such as clinching, is the innovative technique to join these progressive materials. Materials of different thicknesses can be joined by clinching. The paper focuses on the comparison of the properties of the joints made by clinching and resistance spot welding. The application of resistance spot welding is still the most used joining method in car body production. These properties were investigated by tensile test and metallographic observation. The HCT600X+ZF, HCT600X+Z and HX420LAD+Z steel sheets were used for the experiments. The results of tensile test show that the values of load-bearing capacity of clinched joints reached from 3900 N to 5900 N and the resistance spot welded joints reached the values of load-bearing capacity from 12000 N to 19500 N. In comparison to the resistance spot welded joints, the clinched joints reached from 32 to 48% of load-bearing capacity.
Clinching is a manufacturing method of mechanical joining two or more materials without the use of heat or additional components. This process relies on high plastic deformation to create a secure bond. Clinching technology is widely used for joining various grades and thickness of materials. Especially in the automotive industry, clinching is an alternative to spot resistance welding. However, the load-bearing capacity of clinched joints is comparatively lower when compared to resistance spot welded joints. This research aimed to enhance the load-carrying capacity of clinched joints. Experimental tests were conducted on clinched joints with locally modified microstructures to optimize their placement within the joint. The microstructure distribution in the clinched joint region was analysed using light and scanning electron microscopy, as well as microhardness measurements. Two material grades, micro-alloyed steels HX420LAD+Z and dual-phase ferritic-martensitic steels HCT600X+Z, were tested. Each grade underwent five groups of ten samples, subject to identical experimental conditions of local heating by resistance spot welding (RSW) and clinching. The application of RSW to the clinched joint area resulted in increase of load-bearing capacity for both joined types of materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.