The etiology of autism spectrum disorder (ASD) is genetic, environmental, and epigenetic. In addition to sex differences in the prevalence of ASD, which is 3–4 times more common in males, there are also distinct clinical, molecular, electrophysiological, and pathophysiological differences between sexes. In human, males with ASD have more externalizing problems (i.e., attention-deficit hyperactivity disorder), more severe communication and social problems, as well as repetitive movements. Females with ASD generally exhibit fewer severe communication problems, less repetitive and stereotyped behavior, but more internalizing problems, such as depression and anxiety. Females need a higher load of genetic changes related to ASD compared to males. There are also sex differences in brain structure, connectivity, and electrophysiology. Genetic or non-genetic experimental animal models of ASD-like behavior, when studied for sex differences, showed some neurobehavioral and electrophysiological differences between male and female animals depending on the specific model. We previously carried out studies on behavioral and molecular differences between male and female mice treated with valproic acid, either prenatally or early postnatally, that exhibited ASD-like behavior and found distinct differences between the sexes, the female mice performing better on tests measuring social interaction and undergoing changes in the expression of more genes in the brain compared to males. Interestingly, co-administration of S-adenosylmethionine alleviated the ASD-like behavioral symptoms and the gene-expression changes to the same extent in both sexes. The mechanisms underlying the sex differences are not yet fully understood.
The association between the clinical picture of symptomatic women with silicone breast implants (SBI) and dysregulated immunity was in dispute for decades. In the current study, we describe for the first time the functional activity of purified IgG antibodies derived from symptomatic women with SBIs (suffering from subjective/autonomic-related symptoms), both in vitro and in vivo. We found that IgGs, derived from symptomatic women with SBIs, dysregulate inflammatory cytokines (TNFα, IL-6) in activated human peripheral blood mononuclear cells, compared to healthy-women-derived IgGs. Importantly, behavioral studies conducted following intracerebroventricular injection of IgGs derived from symptomatic women with SBIs (who have dysregulated circulating level of IgG autoantibodies directed against autonomic nervous system receptors) into mice brains demonstrated a specific and transient significant increment (about 60%) in the time spent at the center of the open field arena compared with mice injected with IgG from healthy women (without SBIs). This effect was accompanied with a strong trend of reduction of the locomotor activity of the SBI-IgG treated mice, indicating an overall apathic-like behavior. Our study is the first to show the potential pathogenic activity of IgG autoantibodies in symptomatic women with SBIs, emphasizing the importance of these antibodies in SBI-related illness.
The role of hippocampal monoamines and their related genes in the etiology and pathogenesis of depression-like behavior, particularly in impaired sociability traits and the meaning of changes in USVs emitted by pups, remains unknown. We assessed the effects of prenatal administration of S-adenosyl-methionine (SAMe) in Sub mice that exhibit depressive-like behavior on serotonergic, dopaminergic and noradrenergic metabolism and the activity of related genes in the hippocampus (HPC) in adulthood in comparison to saline-treated control Sub mice. During postnatal days 4 and 8, we recorded and analyzed the stress-induced USVs emitted by the pups and tried to understand how the changes in the USVs’ calls may be related to the changes in the monoamines and the activity of related genes. The recordings of the USVs showed that SAMe induced a reduction in the emitted flat and one-frequency step-up call numbers in PND4 pups, whereas step-down type calls were significantly increased by SAMe in PND8 pups. The reduction in the number of calls induced by SAMe following separation from the mothers implies a reduction in anxiety, which is an additional sign of decreased depressive-like behavior. Prenatal SAMe increased the concentrations of serotonin in the HPC in both male and female mice without any change in the levels of 5HIAA. It also decreased the level of the dopamine metabolite DOPAC in females. There were no changes in the levels of norepinephrine and metabolites. Several changes in the expression of genes associated with monoamine metabolism were also induced by prenatal SAMe. The molecular and biochemical data obtained from the HPC studies are generally in accordance with our previously obtained data from the prefrontal cortex of similarly treated Sub mice on postnatal day 90. The changes in both monoamines and their gene expression observed 2–3 months after SAMe treatment are associated with the previously recorded behavioral improvement and seem to demonstrate that SAMe is effective via an epigenetic mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.