Declarations of Interest: Mike Roys is an independent consultant working as a sole trader under the name of Rise and Going Consultancy. There is no conflict of interest with how this study was run nor the outcome measures reported. No other competing interests exist.
Moment arm-angle functions (MA-a-functions) are commonly used to estimate in vivo muscle forces in humans. However, different MA-a-functions might not only influence the magnitude of the estimated muscle forces but also change the shape of the muscle’s estimated force-angle relationship (F-a-r). Therefore, we investigated the influence of different literature based Achilles tendon MA-a-functions on the triceps surae muscle–tendon unit F-a-r. The individual in vivo triceps torque–angle relationship was determined in 14 participants performing maximum voluntary fixed-end plantarflexion contractions from 18.3° ± 3.2° plantarflexion to 24.2° ± 5.1° dorsiflexion on a dynamometer. The resulting F-a-r were calculated using 15 literature-based in vivo Achilles tendon MA-a-functions. MA-a-functions affected the F-a-r shape and magnitude of estimated peak active triceps muscle–tendon unit force. Depending on the MA-a-function used, the triceps was solely operating on the ascending limb (n = 2), on the ascending limb and plateau region (n = 12), or on the ascending limb, plateau region and descending limb of the F-a-r (n = 1). According to our findings, the estimated triceps muscle–tendon unit forces and the shape of the F-a-r are highly dependent on the MA-a-function used. As these functions are affected by many variables, we recommend using individual Achilles tendon MA-a-functions, ideally accounting for contraction intensity-related changes in moment arm magnitude.
PurposeThe purpose of the study was to determine: (1) the relationship between ankle plantarflexor muscle strength and Achilles tendon (AT) biomechanical properties in older female adults, and (2) whether muscle strength asymmetries between the individually dominant and non-dominant legs in the above subject group were accompanied by inter-limb AT size differences.MethodsThe maximal generated AT force, AT stiffness, AT Young’s modulus, and AT cross-sectional area (CSA) along its length were determined for both legs in 30 women (65 ± 7 years) using dynamometry, ultrasonography, and magnetic resonance imaging.ResultsNo between-leg differences in triceps surae muscle strength were identified between dominant (2798 ± 566 N) and non-dominant limb (2667 ± 512 N). The AT CSA increased gradually in the proximo-distal direction, with no differences between the legs. There was a significant correlation (P < 0.05) of maximal AT force with AT stiffness (r = 0.500) and Young’s modulus (r = 0.414), but only a tendency with the mean AT CSA. However, region-specific analysis revealed a significant relationship between maximal AT force and the proximal part of the AT, indicating that this region is more likely to display morphological adaptations following an increase in muscle strength in older adults.ConclusionsThese findings demonstrate that maximal force-generation capabilities play a more important role in the variation of AT stiffness and material properties than in tendon CSA, suggesting that exercise-induced increases in muscle strength in older adults may lead to changes in tendon stiffness foremost due to alterations in material rather than in its size.
When an active muscle is stretched and kept isometrically active, the resulting force is enhanced compared to a purely isometric reference contraction at the same muscle length and activity; a generally accepted muscle property called residual force enhancement (rFE). Interestingly, studies on voluntary muscle action regularly identify a significant number of participants not showing rFE. Therefore, the aim was to unmask possible confounders for this non‐responsive behavior. Ten participants performed maximum voluntary isometric plantarflexion contractions with and without preceding stretch. Contractions were accompanied by the assessment of voluntary activation using the twitch‐interpolation technique. The same test protocol was repeated four additional times with a least on day rest in‐between. Additionally, at the first and fifth sessions, a submaximal tetanic muscle‐stimulation condition was added. At both muscle‐stimulation sessions mean rFE higher 10% (p < 0.028) was found. In contrast, during voluntary muscle action, individual participants showed inconsistent rFE across sessions and only one session (#3) had significant rFE (5%; p = 0.023) in group means. As all participants clearly had rFE in electrical stimulation conditions, structural deficits cannot explain the missing rFE in voluntary muscle action. However, we also did not find variability in voluntary activation levels or muscle activity as the confounding characteristics of “non‐responders.”
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.