In this work we study Good-For-Games (GFG) automata over ω-words: non-deterministic automata where the non-determinism can be resolved by a strategy depending only on the prefix of the ω-word read so far. These automata retain some advantages of determinism: they can be composed with games and trees in a sound way, and inclusion LpAq Ě LpBq can be reduced to a parity game over AˆB if A is GFG. Therefore, they could be used to some advantage in verification, for instance as solutions to the synthesis problem. The main results of this work answer the question whether parity GFG automata actually present an improvement in terms of state-complexity (the number of states) compared to the deterministic ones. We show that a frontier lies between the Büchi condition, where GFG automata can be determinised with only quadratic blow-up in state-complexity; and the co-Büchi condition, where GFG automata can be exponentially smaller than any deterministic automaton for the same language. We also study the complexity of deciding whether a given automaton is GFG.
Abstract. Choices made by nondeterministic word automata depend on both the past (the prefix of the word read so far) and the future (the suffix yet to be read). In several applications, most notably synthesis, the future is diverse or unknown, leading to algorithms that are based on deterministic automata. Hoping to retain some of the advantages of nondeterministic automata, researchers have studied restricted classes of nondeterministic automata. Three such classes are nondeterministic automata that are good for trees (GFT; i.e., ones that can be expanded to tree automata accepting the derived tree languages, thus whose choices should satisfy diverse futures), good for games (GFG; i.e., ones whose choices depend only on the past), and determinizable by pruning (DBP; i.e., ones that embody equivalent deterministic automata). The theoretical properties and relative merits of the different classes are still open, having vagueness on whether they really differ from deterministic automata. In particular, while DBP ⊆ GFG ⊆ GFT, it is not known whether every GFT automaton is GFG and whether every GFG automaton is DBP. Also open is the possible succinctness of GFG and GFT automata compared to deterministic automata. We study these problems for ω-regular automata with all common acceptance conditions. We show that GFT=GFG⊃DBP, and describe a determinization construction for GFG automata.
Model-checking is increasingly popular in the early phases of the software development process. To establish the correctness of a software design one must usually verify both structural and behavioral (or temporal) properties. Unfortunately, most specification languages, and accompanying model-checkers, excel only in analyzing either one or the other kind. This limits their ability to verify dynamic systems with rich configurations: systems whose state space is characterized by rich structural properties, but whose evolution is also expected to satisfy certain temporal properties. To address this problem, we first propose Electrum, an extension of the Alloy specification language with temporal logic operators, where both rich configurations and expressive temporal properties can easily be defined. Two alternative model-checking techniques are then proposed, one bounded and the other unbounded, to verify systems expressed in this language, namely to verify that every desirable temporal property holds for every possible configuration. CCS Concepts •Software and its engineering → Specification languages; Model checking;
We study the Horn theories of Kleene algebras and star continuous Kleene algebras, from the complexity point of view. While their equational theories coincide and are PSpace-complete, their Horn theories differ and are undecidable. We characterise the Horn theory of star continuous Kleene algebras in terms of downward closed languages and we show that when restricting the shape of allowed hypotheses, the problems lie in various levels of the arithmetical or analytical hierarchy. We also answer a question posed by Cohen about hypotheses of the form 1 = S where S is a sum of letters: we show that it is decidable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.