In this work we study Good-For-Games (GFG) automata over ω-words: non-deterministic automata where the non-determinism can be resolved by a strategy depending only on the prefix of the ω-word read so far. These automata retain some advantages of determinism: they can be composed with games and trees in a sound way, and inclusion LpAq Ě LpBq can be reduced to a parity game over AˆB if A is GFG. Therefore, they could be used to some advantage in verification, for instance as solutions to the synthesis problem. The main results of this work answer the question whether parity GFG automata actually present an improvement in terms of state-complexity (the number of states) compared to the deterministic ones. We show that a frontier lies between the Büchi condition, where GFG automata can be determinised with only quadratic blow-up in state-complexity; and the co-Büchi condition, where GFG automata can be exponentially smaller than any deterministic automaton for the same language. We also study the complexity of deciding whether a given automaton is GFG.
Abstract. Choices made by nondeterministic word automata depend on both the past (the prefix of the word read so far) and the future (the suffix yet to be read). In several applications, most notably synthesis, the future is diverse or unknown, leading to algorithms that are based on deterministic automata. Hoping to retain some of the advantages of nondeterministic automata, researchers have studied restricted classes of nondeterministic automata. Three such classes are nondeterministic automata that are good for trees (GFT; i.e., ones that can be expanded to tree automata accepting the derived tree languages, thus whose choices should satisfy diverse futures), good for games (GFG; i.e., ones whose choices depend only on the past), and determinizable by pruning (DBP; i.e., ones that embody equivalent deterministic automata). The theoretical properties and relative merits of the different classes are still open, having vagueness on whether they really differ from deterministic automata. In particular, while DBP ⊆ GFG ⊆ GFT, it is not known whether every GFT automaton is GFG and whether every GFG automaton is DBP. Also open is the possible succinctness of GFG and GFT automata compared to deterministic automata. We study these problems for ω-regular automata with all common acceptance conditions. We show that GFT=GFG⊃DBP, and describe a determinization construction for GFG automata.
Abstract-For a given regular language of infinite trees, one can ask about the minimal number of priorities needed to recognise this language with a non-deterministic or alternating parity automaton. These questions are known as, respectively, the non-deterministic and the alternating Rabin-Mostowski index problems. Whether they can be answered effectively is a long-standing open problem, solved so far only for languages recognisable by deterministic automata (the alternating variant trivialises).We investigate a wider class of regular languages, recognisable by so-called game automata, which can be seen as the closure of deterministic ones under complementation and composition. Game automata are known to recognise languages arbitrarily high in the alternating Rabin-Mostowski index hierarchy, i.e., the alternating index problem does not trivialise any more.Our main contribution is that both index problems are decidable for languages recognisable by game automata. Additionally, we show that it is decidable whether a given regular language can be recognised by a game automaton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.