Recognizing extinction events and determining their cause at the Triassic/Jurassic (T/J) transition and near the Pliensbachian–Toarcian (Lower Jurassic) boundary is a field of growing interest. We provide arguments for these events through a literature based new evaluation of coral diversity from Triassic to Dogger and a new palaeobiogeographical map. The T/J extinction of corals is clearly related to the breakdown of reef environments. Origination curves show that Hettangian (the lowest Jurassic stage) was not only a survival phase but already rather a recovery phase. Post‐extinction evolution of reefs and their survival only in the northernmost margin of the Tethys support the hothouse hypothesis for the T/J extinction event. During Pliensbachian, many new taxa appear, but mostly solitary corals, not really framebuilders. Many of these taxa do not occur anymore during the following stages. The new increase in diversity is related to the development of Bajocian (Middle Jurassic) reefs.
8The Malvinas Basin is located in the southernmost Argentinian continental margin. Despite 9 the lack of commercial hydrocarbon accumulation discoveries, the presence of thermogenic 10 gas in gravity cores and seafloor oil slicks point to the existence of an active petroleum 11 system in this basin.
International audienceThis 3D structural model of the Colorado Basin provides new insights into the crustal geometry of the basin and its evolution in relation with the Argentine passive margin. Three NW-SE segments (oblique to the N30°E-trending margin) structure the basin. The oldest infill is generally thought to be coeval with the rifting of the South Atlantic margins in Late Jurassic-Early Cretaceous. This coeval development of the Colorado Basin and of the passive margin is still under debate and gives rise to several hypotheses that we investigate in the light of our observations. We propose that reactivation of inherited structures is predominant in the evolution of the Colorado Basin: (1) the Western segment follows the continental continuation of the Colorado transfer zone; (2) the Central segment consists in the continental continuation of the Tona deformation zone; (3) the Eastern segment is superimposed over the Palaeozoic Claromecó Basin. In addition to the 3 segments, the Central High, separating the Central segment to the Eastern segment, corresponds to the Palaeozoic Sierras Australes Fold Belt. The direction of extension responsible for the South Atlantic opening cannot explain the syn-rift infill and thinning of the basin. The structural analysis shows two phases of syn-rift deformation with different directions. Thus, we suggest that the Colorado Basin and the South Atlantic margin are not coeval but that a first extensional event, probably oblique, predates the extension responsible for the South Atlantic opening. This event is then followed by the formation of the N30°-trending distal margin and the reactivation of Palaeozoic N70°-trending faults occurs under the NW-SE opening of the South Atlantic. This two-phase evolution is consistent with the fault chronology and the two directions of thinned crust observed in the distal margin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.