BackgroundNeuroinflammation is one of the main causes of neurodegenerative events. Phytoestrogen is a group compounds that have an estrogen-like structure or function. Phytoestrogen has a high potential to overcome neuroinflammation caused by estrogen deficiency in postmenopausal women. Marsilea crenata Presl. is a plant known to contain phytoestrogens. This research aimed to analyze the activity of an n-butanol fraction of M. crenata leaves in inhibiting the classical pathway activation of microglia HMC3 cell line to M1 polarity, which has proinflammatory characteristics.MethodsMicroglia HMC3 cell line was cultured in Eagle’s minimum essential medium and induced with IFN-γ for 24 h to activate the cell to M1 polarity in 24-well microplates. The n-butanol fraction was added with various doses of 62.5, 125, and 250 ppm and genistein 50 μM as a positive control. The expression of major histocompatibility complex II (MHC II) as a marker was tested using a confocal laser scanning microscope.ResultsThe result of MHC II measurement shows a significant difference in the MHC II expression in the microglia HMC3 cell line between the negative control and all treatment groups at p<0.05, indicating a non-monotonic dose-response profile.ConclusionsThe best dosage to inhibit MHC II expression was 250 ppm with the value of 200.983 AU. It is then concluded that n-butanol fraction of M. crenata leaves has antineuroinflammation activity due to its phytoestrogens.
Tubuh manusia akan mengalami penuaan dan menyebabkan kenaikan resiko penyakit dan pada akhirnya menyebabkan kematian. Fenomena tersebut dapat muncul salah satunya akibat penurunan homeostasis tubuh karena menurunnya hormon estrogen. Salah satu senyawa yang berpotensi mengatasi keadaan tersebut adalah fitoestrogen dari golongan flavonoid. Potensi senyawa flavonoid dengan aktivitas fitoestrogenik, dapat diketahui dengan melakukan pengamatan In silico terhadap Estrogen Receptor ? (ER-?) dengan molecular docking. Tujuan penelitian ini adalah untuk mengetahui mekanisme senyawa fitoestrogen melalui jalur ER-dependent lain seperti ER-?. Tahapan molecular docking dilakukan menggunakan plug-in Autodock Vina dalam PyRX 0.8. Hasilnya diketahui senyawa apigenin, quercetin, kaempferol, katekin, genistein dan daidzein memiliki interaksi agonis terhadap ER-?. Interaksi yang diperoleh dapat menggambarkan bahwa senyawa tersebut mampu memberikan aktivitas estrogenik ketika membentuk ikatan ligan reseptor.
Estrogen deficiency can contribute to osteoporosis in postmenopausal women. Phytoestrogens are becoming more widely recognized as potential estrogen replacement therapy. The administration of phytoestrogens can cause bone formation, which is marked by an increase in Runx2 expression in osteoblast cells and can be seen using western blot and immunohistochemistry approaches. This review aimed to compare the detection methods of Runx2 in phytoestrogen-induced bone tissue using western blots and immunohistochemistry. Selectivity, sensitivity, processing time, and cost-effectiveness were the parameters that were compared. This review was done by identifying articles in several databases (Google Scholar, PubMed, and Science Direct). The process of selecting the articles used the PRISMA guidelines to create a flowchart with inclusion and exclusion study criteria. Meta-synthesis was done to analyze, identify, and interpret all of the data in the articles systematically. 70 articles in total were obtained from the selection process, with 21 articles being relevant to the topic. The result shows that the selectivity and sensitivity of western blot for detecting Runx2 on tissue were 93.5–100%, respectively, whereas immunohistochemistry selectivity and sensitivity were 45–99.5%, respectively. Compared to immunohistochemistry, western blot can save up to 57.26%. Immunohistochemistry takes 46 hours to process, while Western blot takes 25 hours and 20 minutes. In comparison to immunohistochemistry, the western blot is more selective, sensitive, rapid and affordable for detecting Runx2 in bone tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.