Firewood and charcoal are the primary energy resources in many developing countries, especially in sub-Saharan Africa. However, the unstainable collection and use of these resources negatively impact the environment. Equally, using briquettes as green energy resources can address the energy shortage and conserves the environment. However, the information on people’s preference to use briquettes instead of other alternative energy sources is scarce. Furthermore, studies demonstrating the briquette technology preferences and adoption to prospective users, including youth and women in urban and rural areas, are limited. Therefore, this study was conducted in the Morogoro district to (1) characterise the respondents’ demographic issues useful for evaluation of people's preferences, (2) assess the preference for briquette fuels, particularly for youth and women, and (3) evaluate the extent of using the briquettes as sources of energy as compared to other alternative sources of energy. The household survey involved 330 respondents in urban, peri-urban, and rural areas of Morogoro. The areas were chosen to represent the Tanzania sceneries. Besides, supplementary key informants’ interviews involved village leaders, charcoal retailers and other people with knowledge of briquette technology. The results show that over 95% of respondents preferred to use briquette as an alternative energy source and expressed their willingness to engage in the briquette business. Additionally, the study shows low use of briquettes compared to other energy sources like charcoal and firewood in urban, peri-urban, and rural areas. Furthermore, there was no significant difference between men and women in their willingness to join the briquette business (p-value =0.517). Therefore, a few people are aware of briquette technology. This study recommends increasing the awareness of briquette technology through training youths and women on briquette technology and insisting on the availability of briquette products and stoves. In addition, assessing the factors hindering the briquettes from being a hundred per cent preferred by people is a point of research interest.
Using artificial intelligence (AI) and the IoT (Internet of Things) is a primary focus of applied engineering research to improve agricultural efficiency. This review paper summarizes the engagement of artificial intelligence models and IoT techniques in detecting, classifying, and counting cotton insect pests and corresponding beneficial insects. The effectiveness and limitations of AI and IoT techniques in various cotton agricultural settings were comprehensively reviewed. This review indicates that insects can be detected with an accuracy of between 70 and 98% using camera/microphone sensors and enhanced deep learning algorithms. However, despite the numerous pests and beneficial insects, only a few species were targeted for detection and classification by AI and IoT systems. Not surprisingly, due to the challenges of identifying immature and predatory insects, few studies have designed systems to detect and characterize them. The location of the insects, sufficient data size, concentrated insects on the image, and similarity in species appearance are major obstacles when implementing AI. Similarly, IoT is constrained by a lack of effective field distance between sensors when targeting insects according to their estimated population size. Based on this study, the number of pest species monitored by AI and IoT technologies should be increased while improving the system’s detection accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.