Aim The study of the spatial dynamics of invasive species is a key issue in invasion ecology. While mathematical models are useful for predicting the extent of population expansions, they are not suitable for measuring and characterizing spatial patterns of invasion unless the probability of detection is homogeneous across the distribution range. Here, we apply recently developed statistical approaches incorporating detection uncertainty to characterize the spatial dynamics of an invasive bird species, the Eurasian collared dove (Streptopelia decaocto).Location France.Methods Data on presence/absence of doves were recorded from 1996 to 2004 over 1045 grid cells (28 · 20 km) covering the entire country. Each grid cell included five point counts spaced along a route, which was visited twice a year, allowing for an estimation of detection probability. Each route was assigned to one of six geographical regions. We used robust design occupancy analysis to assess spatial and temporal variation in parameters related to the spatial dynamics of the species. These parameters included occupancy rate, colonization and local extinction probabilities. Our inference approach was based on the selection of the most parsimonious model among competitive models parametrized with conditional probabilities. ResultsThe probability of detecting the presence of doves on a given route was high. However, we found evidence to incorporate detection uncertainty in inference processes about spatial dynamics, since detection probability was neither perfect (i.e. it was < 1), nor constant over space and time. Results showed a clear positive trend in occupancy rate over the study period, increasing from 55% in 1996 to 76% in 2004. In addition, occupancy rate differed among regions (range: 37-79%) and further analysis showed that colonization probability by region was positively related to occupancy rate. Finally, local extinction probability was lower than colonization probability and showed a tendency to decrease over the study period.Main conclusions Our results emphasize the importance of estimating detection probabilities in order to draw proper inferences about the spatial and temporal dynamics of the invasion pattern of the collared dove. In contrast to the perceived spatial dynamics from national atlas surveys, we provide evidence that the range of this species is currently increasing in France. Other results, such as regional specificity in colonization probabilities and time variation in local extinction are consistent with expectations from invasion and metapopulation theory.
International audienceMany cases of introgressive hybridization have been reported among birds, particularly following introduction to the natural environment of individuals belonging to non-native similar taxa. This appears to be the case for common quail (Coturnix coturnix) in France where wild populations artificially come into contact with domesticated Japanese quail (Coturnix japonica) raised for meat and egg production but sometimes released for hunting purposes. In order to highlight the possible existence of gene flows between both taxa, a comparison of nuclear (25 microsatellite loci) and mitochondrial (sequencing and RFLP) DNA polymorphisms was performed on 375 common quails (from France, Spain and Morocco) and 140 Japanese quails (from France and Japan). Genetic diversity was assessed, and analyses (Factorial Correspondence Analysis, Bayesian admixture) of molecular polymorphisms revealed clear differentiation between the two taxa, making it possible to detect for hybrids among quails sampled in the wild. Eight birds expected to be common quail were found to be two pure Japanese quail, one probable backcross to C. japonica, three F1/F2 hybrids, and two probable backcrosses to Coturnix coturnix. These results show that Japanese quails were released and suggest that the two taxa hybridize in the wild. They confirm the urgent need for preventing the release of pure Japanese or hybrid quails to preserve the genetic integrity of C. coturnix. The tools developed for this study should be useful for accurate monitoring of wild quail populations within the framework of avifauna management programs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.