Light fields become a popular representation of threedimensional scenes, and there is interest in their processing, resampling, and compression. As those operations often result in loss of quality, there is a need to quantify it. In this work, we collect a new dataset of dense reference and distorted light fields as well as the corresponding quality scores which are scaled in perceptual units. The scores were acquired in a subjective experiment using an interactive light-field viewing setup. The dataset contains typical artifacts that occur in light-field processing chain due to light-field reconstruction, multi-view compression, and limitations of automultiscopic displays. We test a number of existing objective quality metrics to determine how well they can predict the quality of light fields. We find that the existing image quality metrics provide good measures of light-field quality, but require dense reference light-fields for optimal performance. For more complex tasks of comparing two distorted light fields, their performance drops significantly, which reveals the need for new, light-field-specific metrics.
Fig. 1. A still life photograph of our optimized printouts. The thickness of all the pictured samples is 1 cm.Color texture reproduction in 3D printing commonly ignores volumetric light transport (cross-talk) between surface points on a 3D print. Such light di usion leads to signi cant blur of details and color bleeding, and is particularly severe for highly translucent resin-based print materials. Given their widely varying scattering properties, this cross-talk between surface points strongly depends on the internal structure of the volume surrounding each surface point. Existing scattering-aware methods use simpli ed models for light di usion, and often accept the visual blur as an immutable property of the print medium. In contrast, our work counteracts heterogeneous scattering to obtain the impression of a crisp albedo texture on top of the 3D print, by optimizing for a fully volumetric material distribution that preserves the target appearance. Our method employs an e cient numerical optimizer on top of a general Monte-Carlo simulation of heterogeneous scattering, supported by a practical calibration procedure to obtain scattering parameters from a given set of printer materials. Despite the inherent translucency of the medium, we reproduce detailed surface textures on 3D prints. We evaluate our system using a commercial, ve-tone 3D print process and compare against the printer's native color texturing mode, demonstrating *Oskar Elek and Denis Sumin share the rst authorship of this work. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for pro t or commercial advantage and that copies bear this notice and the full citation on the rst page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior speci c permission and/or a fee. Request permissions from permissions@acm.org. © 2017 ACM. 0730-0301/2017/11-ART241 $15.00 DOI: 10.1145/3130800.3130890 that our method preserves high-frequency features well without having to compromise on color gamut.
is critically limited to color reproduction on planar surfaces, to arbitrary 3D shapes. Our method enables high-fidelity color texture reproduction on 3D prints by effectively compensating for internal light scattering within arbitrarily shaped objects. In addition, we propose a content-aware gamut mapping that significantly improves color reproduction for the pathological case of thin geometric features. Using a wide range of sample objects with complex textures and geometries, we demonstrate color reproduction whose fidelity is superior to state-of-the-art drivers for color 3D printers. CCS Concepts: • Computing methodologies → Reflectance modeling; Volumetric models; • Applied computing → Computer-aided manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.