Chronic pancreatitis is an inflammatory disorder of the pancreas. We analyzed CPA1 encoding carboxypeptidase A1 in subjects with non-alcoholic chronic pancreatitis and controls in a German discovery cohort and three replication cohorts. Functionally impaired variants were present in 29/944 (3.1%) German patients and in 5/3,938 (0.1%) controls (odds ratio [OR] = 24.9; P = 1.5 × 10-16). The association was strongest in subjects aged ≤10 years (9.7%; OR = 84.0; P = 4.1 × 10-24). In the replication cohorts, defective CPA1 variants were observed in 8/600 (1.3%) patients and in 9/2,432 (0.4%) controls from Europe (P = 0.01), in 5/230 (2.2%) patients and 0/264 controls from India (P = 0.02), and in 5/247 (2.0%) patients but 0/341 controls from Japan (P = 0.013). The mechanism of increased pancreatitis risk by CPA1 variants may involve misfolding-induced endoplasmic reticulum stress rather than elevated trypsin activity as seen with other genetic risk factors.
Carboxyl-ester lipase is a digestive pancreatic enzyme encoded by the highly polymorphic CEL gene1. Mutations in CEL cause maturity-onset diabetes of the young (MODY) with pancreatic exocrine dysfunction2. Here we identified a hybrid allele (CEL-HYB), originating from a crossover between CEL and its neighboring pseudogene CELP. In a discovery cohort of familial chronic pancreatitis cases, the carrier frequency of CEL-HYB was 14.1% (10/71) compared with 1.0% (5/478) in controls (odds ratio [OR] = 15.5, 95% confidence interval [CI] = 5.1-46.9, P = 1.3 × 10−6). Three replication studies in non-alcoholic chronic pancreatitis cohorts identified CEL-HYB in a total of 3.7% (42/1,122) cases and 0.7% (30/4,152) controls (OR = 5.2, 95% CI = 3.2-8.5, P = 1.2 × 10−11; formal meta-analysis). The allele was also enriched in alcoholic chronic pancreatitis. Expression of CEL-HYB in cellular models revealed reduced lipolytic activity, impaired secretion, prominent intracellular accumulation and induced autophagy. The hybrid variant of CEL is the first chronic pancreatitis gene identified outside the protease/antiprotease system of pancreatic acinar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.