Background: Racial inequities for patients with heart failure (HF) have been widely documented. HF patients who receive cardiology care during a hospital admission have better outcomes. It is unknown whether there are differences in admission to a cardiology or general medicine service by race. This study examined the relationship between race and admission service, and its effect on 30-day readmission and mortality Methods: We performed a retrospective cohort study from September 2008 to November 2017 at a single large urban academic referral center of all patients self-referred to the emergency department and admitted to either the cardiology or general medicine service with a principal diagnosis of HF, who self-identified as white, black, or Latinx. We used multivariable generalized estimating equation models to assess the relationship between race and admission to the cardiology service. We used Cox regression to assess the association between race, admission service, and 30-day readmission and mortality. Results: Among 1967 unique patients (66.7% white, 23.6% black, and 9.7% Latinx), black and Latinx patients had lower rates of admission to the cardiology service than white patients (adjusted rate ratio, 0.91; 95% CI, 0.84–0.98, for black; adjusted rate ratio, 0.83; 95% CI, 0.72–0.97 for Latinx). Female sex and age >75 years were also independently associated with lower rates of admission to the cardiology service. Admission to the cardiology service was independently associated with decreased readmission within 30 days, independent of race. Conclusions: Black and Latinx patients were less likely to be admitted to cardiology for HF care. This inequity may, in part, drive racial inequities in HF outcomes.
Background Poor discharge preparation during hospitalization may lead to adverse events after discharge. Checklists and videos that systematically engage patients in preparing for discharge have the potential to improve safety, especially when integrated into clinician workflow via the electronic health record (EHR). Objective This study aims to evaluate the implementation of a suite of digital health tools integrated with the EHR to engage hospitalized patients, caregivers, and their care team in preparing for discharge. Methods We used the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework to identify pertinent research questions related to implementation. We iteratively refined patient and clinician-facing intervention components using a participatory process involving end users and institutional stakeholders. The intervention was implemented at a large academic medical center from December 2017 to July 2018. Patients who agreed to participate were coached to watch a discharge video, complete a checklist assessing discharge readiness, and request postdischarge text messaging with a physician 24 to 48 hours before their expected discharge date, which was displayed via a patient portal and bedside display. Clinicians could view concerns reported by patients based on their checklist responses in real time via a safety dashboard integrated with the EHR and choose to open a secure messaging thread with the patient for up to 7 days after discharge. We used mixed methods to evaluate our implementation experience. Results Of 752 patient admissions, 510 (67.8%) patients or caregivers participated: 416 (55.3%) watched the video and completed the checklist, and 94 (12.5%) completed the checklist alone. On average, 4.24 concerns were reported per each of the 510 checklist submissions, most commonly about medications (664/2164, 30.7%) and follow-up (656/2164, 30.3%). Of the 510 completed checklists, a member of the care team accessed the safety dashboard to view 210 (41.2%) patient-reported concerns. For 422 patient admissions where postdischarge messaging was available, 141 (33.4%) patients requested this service; of these, a physician initiated secure messaging for 3 (2.1%) discharges. Most patient survey participants perceived that the intervention promoted self-management and communication with their care team. Patient interview participants endorsed gaps in communication with their care team and thought that the video and checklist would be useful closer toward discharge. Clinicians participating in focus groups perceived the value for patients but suggested that low awareness and variable workflow regarding the intervention, lack of technical optimization, and inconsistent clinician leadership limited the use of clinician-facing components. Conclusions A suite of EHR-integrated digital health tools to engage patients, caregivers, and clinicians in discharge preparation during hospitalization was feasible, acceptable, and valuable; however, important challenges were identified during implementation. We offer strategies to address implementation barriers and promote adoption of these tools. Trial Registration ClinicalTrials.gov NCT03116074; https://clinicaltrials.gov/ct2/show/NCT03116074.
Background. Approximately 40 percent of individuals using out-of-network physicians experience involuntary out-of-network care, leading to unexpected and sometimes burdensome financial charges. Despite its prevalence, research on patient experiences with involuntary out-of-network care is limited. Greater understanding of patient experiences may inform policy solutions to address this issue. Objective. To characterize the experiences of patients who encountered involuntary out-of-network physician charges. Methods. Qualitative study using 26 in-depth telephone interviews with a semi-structured interview guide. Participants were a purposeful sample of privately insured adults from across the United States who experienced involuntary out-of-network care. They were diverse with regard to income level, education, and health status. Recurrent themes were generated using the constant comparison method of data analysis by a multidisciplinary team. Results. Four themes characterize the perspective of individuals who experienced involuntary out-of-network physician charges: (1) responsibilities and mechanisms for determining network participation are not transparent; (2) physician procedures for billing and disclosure of physician out-of-network status are inconsistent; (3) serious illness requiring emergency care or hospitalization precludes ability to choose a physician or confirm network participation; and (4) resources for mediation of involuntary charges once they occur are not available. Conclusions. Our data reveal that patient education may not be sufficient to reduce the prevalence and financial burden of involuntary out-of-network care. Participants described experiencing involuntary out-of-network health care charges due to systemlevel failures. As policy makers seek solutions, our findings suggest several potential areas of further consideration such as standardization of processes to disclose that a physician is out-of-network, holding patients harmless not only for out-of-network emergency room care but also for non-elective hospitalization, and designation of a mediator for involuntary charges.
Objective To evaluate the effect of electronic health record (EHR)-integrated digital health tools comprised of a checklist and video on transitions-of-care outcomes for patients preparing for discharge. Materials and Methods English-speaking, general medicine patients (>18 years) hospitalized at least 24 hours at an academic medical center in Boston, MA were enrolled before and after implementation. A structured checklist and video were administered on a mobile device via a patient portal or web-based survey at least 24 hours prior to anticipated discharge. Checklist responses were available for clinicians to review in real time via an EHR-integrated safety dashboard. The primary outcome was patient activation at discharge assessed by patient activation (PAM)-13. Secondary outcomes included postdischarge patient activation, hospital operational metrics, healthcare resource utilization assessed by 30-day follow-up calls and administrative data and change in patient activation from discharge to 30 days postdischarge. Results Of 673 patients approached, 484 (71.9%) enrolled. The proportion of activated patients (PAM level 3 or 4) at discharge was nonsignificantly higher for the 234 postimplementation compared with the 245 preimplementation participants (59.8% vs 56.7%, adjusted OR 1.23 [0.38, 3.96], P = .73). Postimplementation participants reported 3.75 (3.02) concerns via the checklist. Mean length of stay was significantly higher for postimplementation compared with preimplementation participants (10.13 vs 6.21, P < .01). While there was no effect on postdischarge outcomes, there was a nonsignificant decrease in change in patient activation within participants from pre- to postimplementation (adjusted difference-in-difference of −16.1% (9.6), P = .09). Conclusions EHR-integrated digital health tools to prepare patients for discharge did not significantly increase patient activation and was associated with a longer length of stay. While issues uncovered by the checklist may have encouraged patients to inquire about their discharge preparedness, other factors associated with patient activation and length of stay may explain our observations. We offer insights for using PAM-13 in context of real-world health-IT implementations. Trial Registration NIH US National Library of Medicine, NCT03116074, clinicaltrials.gov
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.