Integration of the reverse‐transcribed HIV cDNA into the host DNA is a required step in viral replication. The virus‐encoded integrase protein catalyzes the initial DNA breaking and joining reactions that mediate cDNA integration. Here, the identification by X‐ray crystallography of a small‐molecule binding site on the integrase catalytic domain is reported. The small‐molecule family studied consists of a core of arsenic or phosphorus surrounded by four aromatic groups. Two arsenic derivatives were visualized bound to integrase. In each case, two molecules bound at symmetry‐related sites on the catalytic domain dimer interface. The first compound studied, tetraphenyl arsonium, did not inhibit integrase. However, a synthetic compound substituting a catechol for one of the phenyl rings, dihydroxyphenyltriphenylarsonium, bound to the same site and did inhibit the enzyme. Changes in the vicinity of the catalytic site were seen with the inhibitory compound only, potentially explaining its mechanism of action. Further substituting phosphonium for arsonium yielded a compound with an IC50 in the low micromolar range. These findings may be useful in designing new inhibitors of integrase, which is at present the only one of the three HIV enzymes for which clinically useful inhibitors are not available.
At present no antiviral agents are available for treatment of infection by the pathogenic poxvirus molluscum contagiosum virus (MCV). Here we report the identification and characterization of an inhibitor active against the virus-encoded type-1 topoisomerase, an enzyme likely to be required for MCV replication. We screened a library of marine extracts and natural products from microorganisms using MCV topoisomerase assays in vitro. The cyclic depsipeptide sansalvamide A was found to inhibit topoisomerase-catalyzed DNA relaxation. Sansalvamide A was inactive against two other DNA-modifying enzymes tested as a counterscreen. Assays of discrete steps in the topoisomerase reaction cycle revealed that sansalvamide A inhibited DNA binding and thereby covalent complex formation, but not resealing of a DNA nick in a preformed covalent complex. Sansalvamide A also inhibits DNA binding by the isolated catalytic domain, thereby specifying the part of the protein sensitive to sansalvamide A. These data specify the mechanism by which sansalvamide A inhibits MCV topoisomerase. Cyclic depsipeptides related to sansalvamide A represent a potentially promising chemical family for development of anti-MCV agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.