Background: By integrating extracellular signals with actin cytoskeletal changes, Cdc42 plays important roles in cell physiology and has been implicated in human diseases.Results: A small molecule was found to selectively inhibit Cdc42 in biochemical and cellular assays.Conclusion: The identified compound is a highly Cdc42-selective inhibitor.Significance: The described first-in-class Cdc42 GTPase-selective inhibitor will have applications in drug discovery and fundamental research.
BACKGROUND AND PURPOSEAcute activation of κ opioid (KOP) receptors results in anticocaine-like effects, but adverse effects, such as dysphoria, aversion, sedation and depression, limit their clinical development. Salvinorin A, isolated from the plant Salvia divinorum, and its semi-synthetic analogues have been shown to have potent KOP receptor agonist activity and may induce a unique response with similar anticocaine addiction effects as the classic KOP receptor agonists, but with a different side effect profile.
EXPERIMENTAL APPROACHWe evaluated the duration of effects of Mesyl Sal B in vivo utilizing antinociception assays and screened for cocaine-prime induced cocaine-seeking behaviour in self-administering rats to predict anti-addiction effects. Cellular transporter uptake assays and in vitro voltammetry were used to assess modulation of dopamine transporter (DAT) function and to investigate transporter trafficking and kinase signalling pathways modulated by KOP receptor agonists.
KEY RESULTSMesyl Sal B had a longer duration of action than SalA, had anti-addiction properties and increased DAT function in vitro in a KOP receptor-dependent and Pertussis toxin-sensitive manner. These effects on DAT function required ERK1/2 activation. We identified differences between Mesyl Sal B and SalA, with Mesyl Sal B increasing the Vmax of dopamine uptake without altering cell-surface expression of DAT.
CONCLUSIONS AND IMPLICATIONSSalA analogues, such as Mesyl Sal B, have potential for development as anticocaine agents. Further tests are warranted to elucidate the mechanisms by which the novel salvinorin-based neoclerodane diterpene KOP receptor ligands produce both anti-addiction and adverse side effects.
LINKED ARTICLESThis article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx
Previous structure-activity relationship studies of salvinorin A have shown that modification of the acetate functionality off the C-2 position to a methoxy methyl or methoxy ethyl ether moiety leads to increased potency at KOP receptors. However, the reason for this increase remains unclear. Here we report our efforts towards the synthesis and evaluation of C-2 constrained analogs of salvinorin A. These analogs were evaluated at opioid receptors in radioligand binding experiments as well as in the GTP-γ-S functional assay. One compound, 5, was found to have affinity and potency at κ opioid (KOP) receptors comparable to salvinorin A. In further studies, 5 was found to attenuate cocaine-induced drug seeking behavior in rats comparably to salvinorin A. This finding represents the first example of a salvinorin A analog that has demonstrated anti-addictive capabilities.
Further modification of salvinorin A (1a), the major active component of Salvia divinorum, has resulted in the synthesis of novel neoclerodane diterpenes with opioid receptor affinity and activity. We report in this study that oxadiazole 11a and salvidivin A (12a), a photooxygenation product of 1a, have been identified as the first neoclerodane diterpenes with kappa antagonist activity. This indicates that additional structural modifications of 1a may lead to analogues with higher potency and utility as drug abuse medications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.