Previous structure-activity relationship studies of salvinorin A have shown that modification of the acetate functionality off the C-2 position to a methoxy methyl or methoxy ethyl ether moiety leads to increased potency at KOP receptors. However, the reason for this increase remains unclear. Here we report our efforts towards the synthesis and evaluation of C-2 constrained analogs of salvinorin A. These analogs were evaluated at opioid receptors in radioligand binding experiments as well as in the GTP-γ-S functional assay. One compound, 5, was found to have affinity and potency at κ opioid (KOP) receptors comparable to salvinorin A. In further studies, 5 was found to attenuate cocaine-induced drug seeking behavior in rats comparably to salvinorin A. This finding represents the first example of a salvinorin A analog that has demonstrated anti-addictive capabilities.
κ opioid receptor activation by traditional arylacetamide agonists and the novel neoclerodane diterpene κ opioid receptor agonist Salvinorin A (Sal A) results in attenuation of cocaine-seeking behavior in pre-clinical models of addiction. However, adverse effects such as sedation, depression and aversion limit their clinical utility. The Sal A analogue, 2-methoxymethyl salvinorin B (MOM Sal B) is a longer acting Sal A analogue with high affinity for κ opioid receptors. In this study, we tested MOM Sal B for its ability to modulate cocaine-seeking behavior in rats. MOM Sal B (0.3 mg/kg) successfully attenuated cocaine-seeking but also attenuated sucrose reinforcement. No change in activity was observed in either cocaine-induced hyperactivity or spontaneous open field activity tests but increased immobility and decreased swimming times in the forced swim test were observed. This study indicates that κ opioid receptor activation by more potent Sal A analogues modulates cocaine-seeking behavior non-selectively without causing sedation, suggesting an improved side effects profile. However, pro-depressive effects are seen, which may limit the therapeutic potential of this compound. Future studies with Sal A analogues having affinities at other opioid receptors are warranted as they have the potential to identify compounds having effective anti-addiction properties.
Modification of the furan ring of salvinorin A (1), the main active component of Salvia divinorum, has resulted in novel neoclerodane diterpenes with opioid receptor affinity and activity. Conversion of the furan ring to an aldehyde at the C-12 position (5) has allowed for the synthesis of analogues with new carbon-carbon bonds at that position. Previous methods for forming these bonds, such as Grignard and Stille conditions, have met with limited success. We report a palladium catalyzed Liebeskind-Srogl cross-coupling reaction of a thioester and a boronic acid that occurs at neutral pH and ambient temperature to produce ketone analogs at C-12. To the best of our knowledge, this is the first reported usage of the Liebeskind-Srogl reaction to diversify a natural product scaffold. We also describe a one-step protocol for the conversion of 1 to 12-epi-1 (3) through microwave irradiation. Previously, this synthetically challenging process has required multiple steps. Additionally, we report in this study that alkene 9 and aromatic analogues 12, 19, 23, 25, and 26 were discovered to retain affinity and selectivity at kappa opioid receptors (KOP). Finally, we report that the furan-2-yl analog of 1 (31) has similar affinity to 1. Collectively, these findings suggest that different aromatic groups appended directly to the decalin core may be well tolerated by KOP receptors, and may generate further ligands with affinity and activity at KOP receptors.
Much of our knowledge in neuroscience was discovered through the study of mind-altering natural products. However, although much has been learned about human physiology and basic biological processes, the underlying causes of CNS disorders and other disease states are still elusive. Based on its main past successes, the continued study of mind-altering compounds promises to yield novel agents that may be developed into medications and to identify new targets for the treatment of diseases. This Highlight describes the history of investigations into several classes of mind-altering natural products and relates recent and potential therapeutic uses for these agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.