Rolling stock needs regular maintenance in a maintenance facility. Rolling stock from different fleets are routed to maintenance facilities by interchanging the destinations of trains at common stations and by using empty drives. We consider the problem of locating maintenance facilities in a railway network under uncertain or changing line planning, fleet planning and other uncertain factors. These uncertainties and changes are modeled by a discrete set of scenarios. We show that this new problem is NP-hard and provide a two-stage stochastic programming and a two-stage robust optimization formulation. The second-stage decision is a maintenance routing problem with similarity to a minimum cost-flow problem. We prove that the facility location decisions remain unchanged under a simplified routing problem and this gives rise to an efficient mixed integer programming (MIP) formulation. This result also allows us to find an efficient decomposition algorithm for the robust formulation based on scenario addition (SA). Computational work shows that our improved MIP formulation can efficiently solve instances of industrial size. SA improves the computational time for the robust formulation even further and can handle larger instances due to more efficient memory usage. Finally, we apply our algorithms on practical instances of the Netherlands Railways and give managerial insights.
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Real-life planning problems are often complicated by the occurrence of disturbances, which imply that the original plan cannot be followed anymore and some recovery action must be taken to cope with the disturbance. In such a situation it is worthwhile to arm yourself against possible disturbances by including recourse actions in your planning strategy. Well-known approaches to create plans that take possible, common disturbances into account are robust optimization and stochastic programming. More recently, another approach has been developed that combines the best of these two: recoverable robustness. In this paper, we solve recoverable robust optimization problems by the technique of column generation. We consider two types of decomposition approaches: separate recovery and combined recovery. We investigate our approach for two example problems: the size robust knapsack problem, in which the knapsack size may get reduced, and the demand robust shortest path problem, in which the sink is uncertain and the cost of edges may increase. For each problem, we present elaborate computational experiments. We think that our approach is very promising and can be generalized to many other problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.