Adjusting behavior to changed environmental contingencies is critical for survival, and reversal learning provides an experimental handle on such cognitive flexibility. Here, we investigate reversal learning in larval Drosophila. Using odor-taste associations, we establish olfactory reversal learning in the appetitive and the aversive domain, using either fructose as a reward or high-concentration sodium chloride as a punishment, respectively. Reversal learning is demonstrated both in differential and in absolute conditioning, in either valence domain. In differential conditioning, the animals are first trained such that an odor A is paired, for example, with the reward whereas odor B is not (A+/B); this is followed by a second training phase with reversed contingencies (A/B+). In absolute conditioning, odor B is omitted, such that the animals are first trained with paired presentations of A and reward, followed by unpaired training in the second training phase. Our results reveal "true" reversal learning in that the opposite associative effects of both the first and the second training phase are detectable after reversed-contingency training. In what is a surprisingly quick, one-trial contingency adjustment in the Drosophila larva, the present study establishes a simple and genetically easy accessible study case of cognitive flexibility.
Highlights d MooSEZs elicit backward locomotion via MDN-dependent and MDN-independent pathways d MooSEZs are connected to MDNs and other descending neurons d MooSEZs and MDNs both respond to olfactory input d MooSEZs can trigger rotational backward locomotion
TheDrosophilalarva has become an attractive model system for studying fundamental questions in neuroscience. Although the focus was initially on topics such as the structure of genes, mechanisms of inheritance, genetic regulation of development, and the function and physiology of ion channels, today it is often on the cellular and molecular principles of naive and learned behavior.Drosophilalarvae have developed different mechanisms, often widespread in similar manifestations in the animal kingdom, to orient themselves toward olfactory, gustatory, mechanosensory, thermal, and visual stimuli to coordinate their locomotion appropriately. To adapt to changes in the environment, larvae are able to learn to categorize some of these sensory impressions as “good” or “bad.” Depending on their relevance and reliability, the larva learns them and constantly updates these memories. Laboratory experiments allow us to parametrically study and describe many of these processes (e.g., olfactory appetitive and aversive memory or visual appetitive and aversive memory). Combining behavioral tests with various neurogenetic techniques allows us to thermally or optogenetically activate or inhibit individual cells during learning, memory consolidation, and memory retrieval. The molecular and genetic bases of larval learning can be analyzed by using specific mutants. The CRISPR–Cas method has established extensive new directions in this area, in addition to the already wide-ranging traditional approaches, like theGAL4/UASsystem. The combination of these genetic methods with the simplicity and cost-effectiveness of the introduced behavioral assay provides a platform for discovering the fundamental mechanisms underlying learning and memory formation in the rather simple larval brain.
Drosophilalarvae are able to associate an odor stimulus with a temporally overlapping teaching signal encoding reward or punishment. Here, we describe a standardized experimental setup that allows the analysis of larval aversive-odor–taste learning and memory. This is a Pavlovian learning experiment with a single training trial in which larvae are presented with two specific odors in succession, one odor together with salt at a high concentration that is harmful to the larva. In the subsequent test, the trained larvae then show avoidance of the salt-paired odor and spend more time near the unpaired odor. To rule out nonassociative effects (such as naive preferences for odors, exposure, or handling effects), two independent groups of larvae are reciprocally trained. Subsequently, the average of the two individual preference values is determined and quantified as a Performance Index (PI), which assigns a numerical value to the larvae's shown behavioral change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.