Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is a methodology that facilitates the quantification of mRNA expression in a given sample. Analysis of relative gene expression by qRT-PCR requires normalization of the data using a reference gene that is expressed at a similar level in all evaluated conditions. Determining an internal control gene is essential for gene expression studies. Gene expression studies in filamentous fungi frequently use the β-actin gene (actb), β-tubulin, and glyceraldehyde-3-phosphate dehydrogenase as reference genes because they are known to have consistent expression levels. Until now, no study has been performed to select an internal control gene for the filamentous fungal species Penicillium echinulatum. The aim of this study was to evaluate and validate internal control genes to enable the study of gene expression in P. echinulatum using qRT-PCR. P. echinulatum strain S1M29 was grown in conditions to either induce (cellulose and sugar cane bagasse) or repress (glucose) gene expression to analyze 23 candidate normalization genes for stable expression. Two software programs, BestKeeper and geNorm, were used to assess the expression of the candidate normalization genes. The results indicate that the actb reference gene is more stably expressed in P. echinulatum. This is the first report in the literature that determines a normalization gene for this fungus. From the results obtained, we recommend the use of the P. echinulatum actb gene as an endogenous control for gene expression studies of cellulases and hemicellulases by qRT-PCR.
The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v) sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v) soy bran; 0.1% (w/v) wheat bran; and a solution of salts. The highest filter paper activity (FPA) (1.95
±
0.04 IU·mL−1) was obtained on the seventh day in the medium containing 0.5% (w/v) sorbitol and 0.5% (w/v) cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day (9.99 ± 0.75 IU·mL−1) in the medium containing 0.75% (w/v) sorbitol and 0.75% (w/v) cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v) sorbitol and 0.25% (w/v) cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.