Integrins have been implicated in various processes of nervous system development, including proliferation, migration, and differentiation of neuronal cells. In this study, we show that the serine/threonine kinase Ndr2 controls integrin-dependent dendritic and axonal growth in mouse hippocampal neurons. We further demonstrate that Ndr2 is able to induce phosphorylation at the activity-and trafficking-relevant site Thr
Summary Duplications and deletions of short chromosomal fragments are increasingly recognized as the cause for rare neurodevelopmental conditions and disorders. The NDR2 gene encodes a protein kinase important for neuronal development and is part of a microduplication region on chromosome 12 that is associated with intellectual disabilities, autism, and epilepsy. We developed a conditional transgenic mouse with increased Ndr2 expression in postmigratory forebrain neurons to study the consequences of an increased gene dosage of this Hippo pathway kinase on brain circuitry and cognitive functions. Our analysis reveals reduced terminal fields and synaptic transmission of hippocampal mossy fibers, altered hippocampal network activity, and deficits in mossy fiber-dependent behaviors. Reduced doublecortin expression and protein interactome analysis indicate that transgenic Ndr2 disturbs the maturation of granule cells in the dentate gyrus. Together, our data suggest that increased expression of Ndr2 may critically contribute to the development of intellectual disabilities upon gene amplification.
The gene CACNA1C, which encodes the pore forming subunit of the L-type calcium channel CaV1.2, is associated with increased risk for neuropsychiatric disorders including schizophrenia, autism spectrum disorder, major depression, and bipolar disorder. Previous rodent work identified that loss or reduction of CaV1.2 results in cognitive, affective, and motor deficits. Most previous work has either included non-neuronal cell populations (haploinsufficient and Nestin-Cre) or investigated a discrete neuronal cell population (e.g. CaMKII-Cre, Drd1-Cre), but few studies have examined the effects of more broad neuron-specific deletion of CaV1.2. Additionally, most of these studies did not evaluate for sex-specific effects or used only male animals. Here, we sought to clarify whether there are sex-specific behavioral consequences of neuron-specific deletion of CaV1.2 (neuronal CaV1.2 cKO) using Syn1-Cre-mediated conditional deletion. We found that neuronal CaV1.2 cKO mice have normal baseline locomotor function but female cKO mice display impaired motor performance learning. Male neuronal CaV1.2 cKO display impaired startle response with intact pre-pulse inhibition. Male neuronal CaV1.2 cKO mice did not display normal social preference, whereas female neuronal CaV1.2 cKO mice did. Neuronal CaV1.2 cKO mice displayed impaired associative learning in both sexes, as well as normal anxiety-like behavior and hedonic capacity. We conclude that deletion of neuronal CaV1.2 alters motor performance, acoustic startle reflex, and social behaviors in a sex-specific manner, while associative learning deficits generalize across sexes. Our data provide evidence for both sex-specific and sex-independent phenotypes related to neuronal expression of CaV1.2.
The gene CACNA1C, which encodes the L-type calcium channel CaV1.2, is associated with increased risk for neuropsychiatric disorders including schizophrenia, autism spectrum disorder, major depression, and bipolar disorder. Previous rodent work identified that loss or reduction of CaV1.2 results in cognitive, affective, and motor deficits. However, it is unclear if the phenotypes described in these studies result from loss of CaV1.2 from neurons or other central nervous system cell types. Additionally, most of these studies did not evaluate for sex-specific effects or used only male animals. Here, we sought to clarify whether there are sex-specific behavioral consequences of neuron-specific deletion of CaV1.2 (neuronal CaV1.2 cKO). We found that neuronal CaV1.2 cKO mice have normal baseline locomotor function but female cKO mice display impaired motor performance learning. Male neuronal CaV1.2 cKO display impaired startle response with intact pre-pulse inhibition. Male neuronal CaV1.2 cKO mice did not display normal social preference, whereas female neuronal CaV1.2 cKO mice did. In agreement with previous work, neuronal CaV1.2 cKO mice displayed impaired associative learning in both sexes, as well as normal anxiety-like behavior and hedonic capacity. We conclude that deletion of neuronal CaV1.2 alters motor performance, acoustic startle reflex, and social behaviors in a sex-specific manner, while associative learning deficits generalize across sexes. Our data provide evidence for both sex-specific and sex-independent phenotypes related to neuronal expression of CaV1.2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.