Pairs of neurons in brain networks often share much of the input they receive from other neurons. Due to essential non-linearities of the neuronal dynamics, the consequences for the correlation of the output spike trains are generally not well understood. Here we analyze the case of two leaky integrate-and-fire neurons using a novel non-perturbative approach. Our treatment covers both weakly and strongly correlated dynamics, generalizing previous results based on linear response theory.
There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks (SNNs). Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC, besides steering the system back to a healthy state, also recovers the computations performed by the underlying network. Finally, using our theory we identify the role of single neuron and synapse properties in determining the stability of the closed-loop system.
The Internet of Things (IoT) applications has been developing greatly in recent years to solve communication problems, especially in rural areas. Within the IoT, the context-awareness paradigm, especially in precision agricultural practices, has come to a state of the planning of production time. As smart cities approach, the smart environment approach also increases its place in IoT applications and has dominated research in recent years in literature. In this study, soil and environmental information were collected in 17 km diameter in rural area with developed Long Range (LoRa) based context-aware platform. With the developed sensor and actuator control unit, soil moisture at 5 cm and 30 cm depth and soil surface temperature information were collected and the communication performance was investigated. During the study, the performance measurements of the developed Serial Peripheral Interface (SPI) enabled Long Range Wide Area Network (LoRaWAN) gateway were also performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.