Mapping of posterior malleolar fractures revealed a continuous spectrum of Haraguchi III to I fractures and identified Haraguchi type II as a separate pattern. Quantification of 3-dimensional CT-modeling is reliable to assess fracture characteristics of posterior malleolar fracture fragments. Morphology might be more important than posterior malleolar fracture size alone for clinical decision making.
Purpose The detection of lymph-node metastases (N1) with conventional imaging such as magnetic resonance imaging (MRI) and computed tomography (CT) is inadequate for primarily diagnosed prostate cancer (PCa). Prostate-specific membrane antigen (PSMA) PET/CT is successfully introduced for the staging of (biochemically) recurrent PCa. Besides the frequently used 68 gallium-labelled PSMA tracers, 18 fluorine-labelled PSMA tracers are available. This study examined the diagnostic accuracy of 18 F-DCFPyL (PSMA) PET/CT for lymph-node staging in primary PCa. Methods This was a prospective, multicentre cohort study. Patients with primary PCa underwent 18 F-DCFPyL PET/CT prior to robot-assisted radical prostatectomy (RARP) with extended pelvic lymph-node dissection (ePLND). Patients were included between October 2017 and January 2020. A Memorial Sloan Kettering Cancer Centre (MSKCC) nomogram risk probability of ≥ 8% of lymph-node metastases was set to perform ePLND. All images were reviewed by two experienced nuclear physicians, and were compared with post-operative histopathologic results. Results A total of 117 patients was analysed. Lymph-node metastases (N1) were histologically diagnosed in 17/117 patients (14.5%). The sensitivity, specificity, positive predictive value and negative predictive value for the 18 F-DCFPyL PET/CT detection of pelvic lymph-node metastases on a patient level were 41.2% (confidence interval (CI): 19.4-66.5%), 94.0% (CI 86.9-97.5%), 53.8% (CI 26.1-79.6%) and 90.4% (CI 82.6-95.0%), respectively. Conclusion 18 F-DCFPyL PET/CT showed a high specificity (94.4%), yet a limited sensitivity (41.2%) for the detection of pelvic lymph-node metastases in primary PCa. This implies that current PSMA PET/CT imaging cannot replace diagnostic ePLND. Further research is necessary to define the exact place of PSMA PET/CT imaging in the primary staging of PCa.
Purpose
In primary prostate cancer (PCa) patients, accurate staging and histologic grading are crucial to guide treatment decisions. 18F-DCFPyL (PSMA)-PET/CT has been successfully introduced for (re)staging PCa, showing high accuracy to localise PCa in lymph nodes and/or osseous structures. The diagnostic performance of 18F-DCFPyL-PET/CT in localizing primary PCa within the prostate gland was assessed, allowing for PSMA-guided targeted-prostate biopsy.
Methods
Thirty patients with intermediate-/high-risk primary PCa were prospectively enrolled between May 2018 and May 2019 and underwent 18F-DCFPyL-PET/CT prior to robot-assisted radical prostatectomy (RARP). Two experienced and blinded nuclear medicine physicians assessed tumour localisation within the prostate gland on PET/CT, using a 12-segment mapping model of the prostate. The same model was used by a uro-pathologist for the RARP specimens. Based on PET/CT imaging, a potential biopsy recommendation was given per patient, based on the size and PET-intensity of the suspected PCa localisations. The biopsy recommendation was correlated to final histopathology in the RARP specimen. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for clinically significant PCa (csPCa, Gleason score ≥ 3 + 4 = 7) were assessed.
Results
The segments recommended for potential targeted biopsy harboured csPCA in 28/30 patients (93%), and covered the highest Gleason score PCa segment in 26/30 patient (87%). Overall, 122 of 420 segments (29.0%) contained csPCa at final histopathological examination. Sensitivity, specificity, PPV and NPV for csPCa per segment using 18F-DCFPyL-PET/CT were 61.4%, 88.3%, 68.1% and 84.8%, respectively.
Conclusions
When comparing the PCa-localisation on 18F-DCFPyL-PET/CT with the RARP specimens, an accurate per-patient detection (93%) and localisation of csPCa was found. Thus, 18F-DCFPyL-PET/CT potentially allows for accurate PSMA-targeted biopsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.