FKBP ligand homodimers can be used to activate signaling events inside cells and animals that have been engineered to express fusions between appropriate signaling domains and FKBP. However, use of these dimerizers in vivo is potentially limited by ligand binding to endogenous FKBP. We have designed ligands that bind specifically to a mutated FKBP over the wild-type protein by remodeling an FKBP-ligand interface to introduce a specificity binding pocket. A compound bearing an ethyl substituent in place of a carbonyl group exhibited sub-nanomolar affinity and 1,000-fold selectivity for a mutant FKBP with a compensating truncation of a phenylalanine residue. Structural and functional analysis of the new pocket showed that recognition is surprisingly relaxed, with the modified ligand only partially filling the engineered cavity. We incorporated the specificity pocket into a fusion protein containing FKBP and the intracellular domain of the Fas receptor. Cells expressing this modified chimeric protein potently underwent apoptosis in response to AP1903, a homodimer of the modified ligand, both in culture and when implanted into mice. Remodeled dimerizers such as AP1903 are ideal reagents for controlling the activities of cells that have been modified by gene therapy procedures, without interference from endogenous FKBP.
Gene therapy was originally conceived as a medical intervention to replace or correct defective genes in patients with inherited disorders. However, it may have much broader potential as an alternative delivery platform for protein therapeutics, such as cytokines, hormones, antibodies and novel engineered proteins. One key technical barrier to the widespread implementation of this form of therapy is the need for precise control over the level of protein production. A suitable system for pharmacologic control of therapeutic gene expression would permit precise titration of gene product dosage, intermittent or pulsatile treatment, and ready termination of therapy by withdrawal of the activating drug. We set out to design such a system with the following properties: (1) low baseline expression and high induction ratio; (2) positive control by an orally bioavailable small-molecule drug; (3) reduced potential for immune recognition through the exclusive use of human proteins; and (4) modularity to allow the independent optimization of each component using the tools of protein engineering. We report here the properties of this system and demonstrate its use to control circulating levels of human growth hormone in mice implanted with engineered human cells.
The design and synthesis of high-affinity FKBP 12 ligands is described. These compounds potently inhibit the m-rrans-peptidylprolyl isomerase (rotamase) activity catalyzed by FKBP 12 with inhibition constants (Ki,app) as low as 1 nM, yet they possess remarkable structural simplicity relative to FK506 and rapamycin, from which they are conceptually derived. The atomic structures of three FKBP12-ligand complexes and of one unbound ligand were determined by X-ray crystallography and are compared to the FKBP12-FK506 and FKBP12-rapamycin complexes.
A system for direct pharmacologic control of protein secretion was developed to allow rapid and pulsatile delivery of therapeutic proteins. A protein was engineered so that it accumulated as aggregates in the endoplasmic reticulum. Secretion was then stimulated by a synthetic small-molecule drug that induces protein disaggregation. Rapid and transient secretion of growth hormone and insulin was achieved in vitro and in vivo. A regulated pulse of insulin secretion resulted in a transient correction of serum glucose concentrations in a mouse model of hyperglycemia. This approach may make gene therapy a viable method for delivery of polypeptides that require rapid and regulated delivery.
The use of low molecular weight organic compounds to induce dimerization or oligomerization of engineered proteins has wide-ranging utility in biological research as well as in gene and cell therapies. Chemically induced dimerization can be used to activate intracellular signal transduction pathways or to control the activity of a bipartite transcription factor. Dimerizer systems based on the natural products cyclosporin, FK506, rapamycin, and coumermycin have been described. However, owing to the complexity of these compounds, adjusting their binding or pharmacological properties by chemical modification is difficult. We have investigated several families of readily prepared, totally synthetic, cell-permeable dimerizers composed of ligands for human FKBP12. These molecules have significantly reduced complexity and greater adaptability than natural product dimers. We report here the efficacies of several of these new synthetic compounds in regulating two types of protein dimerization events inside engineered cells--induction of apoptosis through dimerization of engineered Fas proteins and regulation of transcription through dimerization of transcription factor fusion proteins. One dimerizer in particular, AP1510, proved to be exceptionally potent and versatile in all experimental contexts tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.