FKBP ligand homodimers can be used to activate signaling events inside cells and animals that have been engineered to express fusions between appropriate signaling domains and FKBP. However, use of these dimerizers in vivo is potentially limited by ligand binding to endogenous FKBP. We have designed ligands that bind specifically to a mutated FKBP over the wild-type protein by remodeling an FKBP-ligand interface to introduce a specificity binding pocket. A compound bearing an ethyl substituent in place of a carbonyl group exhibited sub-nanomolar affinity and 1,000-fold selectivity for a mutant FKBP with a compensating truncation of a phenylalanine residue. Structural and functional analysis of the new pocket showed that recognition is surprisingly relaxed, with the modified ligand only partially filling the engineered cavity. We incorporated the specificity pocket into a fusion protein containing FKBP and the intracellular domain of the Fas receptor. Cells expressing this modified chimeric protein potently underwent apoptosis in response to AP1903, a homodimer of the modified ligand, both in culture and when implanted into mice. Remodeled dimerizers such as AP1903 are ideal reagents for controlling the activities of cells that have been modified by gene therapy procedures, without interference from endogenous FKBP.
The design and synthesis of high-affinity FKBP 12 ligands is described. These compounds potently inhibit the m-rrans-peptidylprolyl isomerase (rotamase) activity catalyzed by FKBP 12 with inhibition constants (Ki,app) as low as 1 nM, yet they possess remarkable structural simplicity relative to FK506 and rapamycin, from which they are conceptually derived. The atomic structures of three FKBP12-ligand complexes and of one unbound ligand were determined by X-ray crystallography and are compared to the FKBP12-FK506 and FKBP12-rapamycin complexes.
Gene therapy is a potential route for the delivery of secreted therapeutic proteins, but pharmacologic control of expression will generally be required for optimal safety and efficacy. Previous attempts to achieve regulated expression in largeanimal models have been thwarted by transient expression or immune responses to regulatory proteins. We evaluated the ability of the dimerizer-regulated gene expression system to achieve controlled, long-term production of erythropoietin (
Using structure-based design and protein mutagenesis we have remodeled the FKBP12 ligand binding site to include a sizable, hydrophobic specificity pocket. This mutant (F36V-FKBP) is capable of binding, with low or subnanomolar affinities, novel synthetic ligands possessing designed substituents that sterically prevent binding to the wild-type protein. Using binding and structural analysis of bumped compounds, we show here that the pocket is highly promiscuous-capable of binding a range of hydrophobic alkyl and aryl moieties with comparable affinity. Ligand affinity therefore appears largely insensitive to the degree of occupancy or quality of packing of the pocket. NMR spectroscopic analysis indicates that similar ligands can adopt radically different binding modes, thus complicating the interpretation of structure-activity relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.