SUMMARY
Cells in renewing tissues exhibit dramatic transcriptional changes as they differentiate. The contribution of chromatin looping to tissue renewal is incompletely understood. Enhancer-promoter interactions could be relatively stable as cells transition from progenitor to differentiated states; alternatively, chromatin looping could be as dynamic as the gene expression from their loci. The intestinal epithelium is the most rapidly renewing mammalian tissue. Proliferative cells in crypts of Lieberkühn sustain a stream of differentiated cells that are continually shed into the lumen. We apply chromosome conformation capture combined with chromatin immunoprecipitation (HiChIP) and sequencing to measure enhancer-promoter interactions in progenitor and differentiated cells of the intestinal epithelium. Despite dynamic gene regulation across the differentiation axis, we find that enhancer-promoter interactions are relatively stable. Functionally, we find HNF4 transcription factors are required for chromatin looping at target genes. Depletion of HNF4 disrupts local chromatin looping, histone modifications, and target gene expression. This study provides insights into transcriptional regulatory mechanisms governing homeostasis in renewing tissues.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Vitamin D receptor (VDR) is a transcription factor that mediates calcium absorption by intestinal epithelial cells. Although calcium absorption is ca-nonically thought to occur only in the small intestine, recent studies have shown that VDR activity in the co-lon alone is sufficient to prevent calcium deficiency in mice. Here, we further investigate VDR activity in the colon. We assess VDR-DNA binding in mouse duodenal crypt, duodenal villi, and colonic epithelial cells using Chromatin Immunoprecipitation se-quencing (ChIP-seq). We find that most VDR-respon-sive elements are common to all intestinal epithelial cells, though some VDR-responsive elements are re-gionally-enriched and exhibit greater VDR-binding affinity in either duodenal epithelial cells or colonic epithelial cells. We also assess chromatin accessibil-ity in the same three cell types using Assay for Trans-posase-Accessible Chromatin sequencing (ATAC-seq). By integrating the VDR ChIP-seq and ATAC-seq data, we find that regionally-enriched VDR-re-sponsive elements exhibit greater chromatin acces-sibility in the region of their enrichment. Finally, we assess the transcription factor motifs present in VDR-responsive elements. We find that duodenum- and colon-enriched VDR-responsive elements exhibit different sets of transcription factor motifs other than VDR, suggesting that VDR may act together with dif-ferent partner transcription factors in the two re-gions. Our work is the first investigation of VDR-DNA binding in the colon and provides a basis for further investigations of VDR activity in the colon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.