Optical Character Recognition (OCR) on historical printings is a challenging task mainly due to the complexity of the layout and the highly variant typography. Nevertheless, in the last few years great progress has been made in the area of historical OCR, resulting in several powerful open-source tools for preprocessing, layout recognition and segmentation, character recognition and post-processing. The drawback of these tools often is their limited applicability by non-technical users like humanist scholars and in particular the combined use of several tools in a workflow. In this paper we present an open-source OCR software called OCR4all, which combines state-of-the-art OCR components and continuous model training into a comprehensive workflow. A comfortable GUI allows error corrections not only in the final output, but already in early stages to minimize error propagations. Further on, extensive configuration capabilities are provided to set the degree of automation of the workflow and to make adaptations to the carefully selected default parameters for specific printings, if necessary. Experiments showed that users with minimal or no experience were able to capture the text of even the earliest printed books with manageable effort and great quality, achieving excellent character error rates (CERs) below 0.5%. The fully automated application on 19th century novels showed that OCR4all can considerably outperform the commercial state-of-the-art tool ABBYY Finereader on moderate layouts if suitably pretrained mixed OCR models are available. The architecture of OCR4all allows the easy integration (or substitution) of newly developed tools for its main components by standardized interfaces like PageXML, thus aiming at continual higher automation for historical printings.
Optical Character Recognition (OCR) on historical printings is a challenging task mainly due to the complexity of the layout and the highly variant typography. Nevertheless, in the last few years great progress has been made in the area of historical OCR, resulting in several powerful open-source tools for preprocessing, layout recognition and segmentation, character recognition and post-processing. The drawback of these tools often is their limited applicability by non-technical users like humanist scholars and in particular the combined use of several tools in a workflow. In this paper we present an open-source OCR software called OCR4all, which combines state-of-the-art OCR components and continuous model training into a comprehensive workflow. A comfortable GUI allows error corrections not only in the final output, but already in early stages to minimize error propagations. Further on, extensive configuration capabilities are provided to set the degree of automation of the workflow and to make adaptations to the carefully selected default parameters for specific printings, if necessary. Experiments showed that users with minimal or no experience were able to capture the text of even the earliest printed books with manageable effort and great quality, achieving excellent character error rates (CERs) below 0.5%. The fully automated application on 19 th century novels showed that OCR4all can considerably outperform the commercial state-of-the-art tool ABBYY Finereader on moderate layouts if suitably pretrained mixed OCR models are available. The architecture of OCR4all allows the easy integration (or substitution) of newly developed tools for its main components by standardized interfaces like PageXML, thus aiming at continual higher automation for historical printings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.