Purpose Metabolic syndrome in patients with morbid obesity causes a higher cardiovascular morbidity, eventually leading to left ventricular hypertrophy and decreased left ventricular ejection fraction (LVEF). Roux-en-Y gastric bypass (RYGB) is considered the gold standard modality for treatment of morbid obesity and might even lead to improved cardiac function. Our objective is to investigate whether cardiac function in patients with morbid obesity improves after RYGB. Materials and Methods In this single center pilot study, 15 patients with an uneventful cardiac history who underwent RYGB were included from May 2015 to March 2016. Cardiac function was measured by cardiac magnetic resonance imaging (CMRI), performed preoperatively and 3, 6, and 12 months postoperative. LVEF and myocardial mass and cardiac output were measured. Results A total of 13 patients without decreased LVEF preoperative completed follow-up (mean age 37, 48.0 ± 8.8). There was a significant decrease of cardiac output 12 months postoperative (8.3 ± 1.8 preoperative vs. 6.8 ± 1.8 after 12 months, P = 0.001). Average myocardial mass declined by 15.2% (P < 0.001). After correction for body surface area (BSA), this appeared to be nonsignificant (P = 0.36). There was a significant improvement of LVEF/BSA at 6 and 12 months postoperative (26.2 ± 4.1 preoperative vs. 28.4 ± 3.4 and 29.2 ± 3.6 respectively, both P = 0.002). Additionally, there was a significant improvement of stroke volume/BSA 12 months after surgery (45.8 ± 8.0 vs. 51.9 ± 10.7, P = 0.033). Conclusion RYGB in patients with morbid obesity with uneventful history of cardiac disease leads to improvement of cardiac function.
Thermal mass is usually positively associated with energy efficiency and thermal comfort in buildings. However, the slow response of heavyweight constructions is not beneficial at all times, as these dynamic effects may actually also increase heating and cooling energy demand during intermittent operation or can cause unwanted discomfort. This study investigates the potential of energy simulations to support the exploration-driven development of two innovative responsive building elements: "Spong3D" and "Convective Concrete". Both use fluid flow (Spong3D: water, Convective Concrete: air) inside the construction to reduce building energy demand by exploiting the use of natural energy sinks and sources in the ambient environment, aiming to make more intelligent use of thermal mass. During the development of these concepts, different simulation tools were used alongside experiments for e.g. materials selection, climate analysis, comfort prediction and risk assessment. By presenting the results from a series of simulation studies and by reflecting on their application, this paper shows how computational building performance analyses can play a useful role in ill-defined R&D processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.