To investigate alcohol dependency and the potential role of age of initial alcohol consumption, Long-Evans (LE) rats were fed an ethanol-containing liquid diet starting at postnatal (P) ages (days): P23-27 (juvenile), P35-45 (adolescent) or P65-97 (young adult). Severity of subsequent withdrawal symptoms was dependent on age when consumption began and on duration of alcohol consumption. Frequency of withdrawal seizures was highest for rats starting consumption as juveniles, intermediate for adolescents and lowest for adults. Normalized to body weight, alcohol consumption was significantly higher for adolescent and juvenile rats than for adults. SpragueDawley rats that began alcohol consumption as adolescents (P35) had a level of alcohol consumption identical to that of the adolescent LE rats but showed much lower frequency of withdrawal seizures when tested after 2, 3 and 5 weeks of alcohol consumption. Based on several indicators, the capacity of the juveniles to metabolize ethanol is equal to or exceeds that of adults. Recoveries from a single dose of ethanol (2.5g ethanol/kg body weight) were faster for juvenile LE rats than adults. The rate of decline in blood ethanol concentration was identical for juvenile and adult rats while the corrected ethanol elimination rate was higher for juveniles. The primary isozyme of alcohol dehydrogenase (ADH) in rat liver, ADH-3, had a similar Km and higher activity in liver preparations from juveniles. In conclusion, LE rats beginning alcohol consumption as juveniles or adolescents develop a severe alcohol withdrawal syndrome that may not be attributed entirely to higher levels of consumption and was not explained by any obvious deficiencies in metabolism.
SYNOPSIS. The fatty acids of whole cells and cilia from Paramecium tetraurelia strains 51s and dr95 and from Paramecium octaurelia strain 299s were identified. Ciliates were grown axenically in 3 types of culture media. More than 30 fatty acid species were identified and their structures determined by gas chromatography, mass spectrometry, argentation chromatography, hydrogenation, and fragmentation technics. The major fatty acids were hexadecanoic, octadecanoic, 9-octadecenoic, 9,12-octadecadienoic, 6,9,12-octadecatrienoic, and 5,8,11,14-eicosatetraenoic acids. Minor variations in fatty acid compositions were observed in cells grown in the different culture media as well as among the 3 strains. Major changes in fatty acid compositions occurred with culture age and cell density. The cells accumulated exogenous lipids in cytoplasmic vesicles. These lipids were utilized as culture age progressed. Both cellular volume and lipid content were greater in young than in older cultures. Fatty acid compositions of both whole cells and cilia changed with age and had a relative decrease in saturated, short-chained and odd-numbered carbon acids. Cilia lipids were enriched in long-chained, polyunsaturated acids as compared to lipids in whole cell extracts. Eicosatetraenoic acid (arachidonic acid) increased to the greatest extent with age in both cellular and ciliary lipids, accounting for 20-600/0 of the total fatty acids in cilia. The age-related change in fatty acid composition in Paramecium is among the largest observed in eukaryotic organisms. It was concluded that some minor fatty acids found in Paramecium lipids were incorporated directly from certain culture media and that Paramecium had w 3 , 6, and 9 pathways for polyunsaturated fatty acid biosynthesis.
The Na+-dependent synaptosomal uptakes of proline, aspartic acid, glutamic acid, and gamma-aminobutyric acid were strong inhibited by monounsaturated fatty acids. With oleic acid, half-maximal inhibition was observed at about 15 microM. The Na+-independent uptakes of leucine, phenylalanine, histidine, and valine were less sensitive to inhibition by the unsaturated fatty acids. In contrast, the uptakes of all of these amino acids were unaffected by saturated fatty acids. The inhibition of proline uptake (and that of the other Na+-dependent amino acids) by oleic acid was overcome by the addition of serum albumin and the data presented further indicate that the previously reported stimulation of proline uptake by albumin could be related to its fatty acid binding properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.