Influenza epidemics in temperate regions show a characteristic seasonal pattern with peak incidence occurring in winter. Previous research has shown that low absolute humidity and school holidays can both affect influenza transmission. During an epidemic, transmission is strongly influenced by the depletion of susceptibles (i.e., increase in the number of those immune). To assess how much variability in influenza transmission intensity is due to each of these driving factors, we used a long time series of the number of weekly visits to general practitioners for influenzalike illness in the Netherlands from 1970-2011 and transformed this into a time series of weekly influenza reproduction numbers, which are a measure of transmission intensity. We used statistical regression techniques to quantify how the reproduction numbers were affected by each driving factor. We found a clear ranking of importance of driving factors in explaining the variation in transmission intensity. Most of the variation (30%) was explained by the depletion of susceptibles during the season, 27% was explained by between-season effects, and 3% was explained by absolute humidity. School holidays at the Christmas period did not have a statistically significant effect on influenza transmission. Although the influence of absolute humidity was small, its seasonal fluctuations may determine when sustained influenza transmission is possible and may thus drive influenza seasonality.
Key weather factors determining the occurrence and severity of powdery mildew and yellow rust epidemics on winter wheat were identified. Empirical models were formulated to qualitatively predict a damaging epidemic (>5% severity) and quantitatively predict the disease severity given a damaging epidemic occurred. The disease data used was from field experiments at 12 locations in the UK covering the period from 1994 to 2002 with matching data from weather stations within a 5 km range. Wind in December to February was the most influential factor for a damaging epidemic of powdery mildew. Disease severity was best identified by a model with temperature, humidity, and rain in April to June. For yellow rust, the temperature in February to June was the most influential factor for a damaging epidemic as well as for disease severity. The qualitative models identified favorable circumstances for damaging epidemics, but damaging epidemics did not always occur in such circumstances, probably due to other factors such as the availability of initial inoculum and cultivar resistance.
Reliable discrimination of recent influenza A infection from previous exposure using hemagglutination inhibition (HI) or virus neutralization tests is currently not feasible. This is due to low sensitivity of the tests and the interference of antibody responses generated by previous infections. Here we investigate the diagnostic characteristics of a newly developed antibody (HA1) protein microarray using data from cross-sectional serological studies carried out before and after the pandemic of 2009. The data are analysed by mixture models, providing a probabilistic classification of sera (susceptible, prior-exposed, recently infected). Estimated sensitivity and specificity for identifying A/2009 infections are low using HI (66% and 51%), and high when using A/2009 microarray data alone or together with A/1918 microarray data (96% and 95%). As a heuristic, a high A/2009 to A/1918 antibody ratio (>1.05) is indicative of recent infection, while a low ratio is indicative of a pre-existing response, even if the A/2009 titer is high. We conclude that highly sensitive and specific classification of individual sera is possible using the protein microarray, thereby enabling precise estimation of age-specific infection attack rates in the population even if sample sizes are small.
Obtaining a quantitative understanding of the transmission dynamics of influenza A is important for predicting healthcare demand and assessing the likely impact of intervention measures. The pandemic of 2009 provides an ideal platform for developing integrative analyses as it has been studied intensively, and a wealth of data sources is available. Here, we analyse two complementary datasets in a disease transmission framework: cross-sectional serological surveys providing data on infection attack rates, and hospitalization data that convey information on the timing and duration of the pandemic. We estimate key epidemic determinants such as infection and hospitalization rates, and the impact of a school holiday. In contrast to previous approaches, our novel modelling of serological data with mixture distributions provides a probabilistic classification of individual samples (susceptible, immune and infected), propagating classification uncertainties to the transmission model and enabling serological classifications to be informed by hospitalization data. The analyses show that high levels of immunity among persons 20 years and older provide a consistent explanation of the skewed attack rates observed during the pandemic and yield precise estimates of the probability of hospitalization per infection (1–4 years: 0.00096 (95%CrI: 0.00078–0.0012); 5–19 years: 0.00036 (0.00031–0.0044); 20–64 years: 0.0015 (0.00091–0.0020); 65+ years: 0.0084 (0.0028–0.016)). The analyses suggest that in The Netherlands, the school holiday period reduced the number of infectious contacts between 5- and 9-year-old children substantially (estimated reduction: 54%; 95%CrI: 29–82%), thereby delaying the unfolding of the pandemic in The Netherlands by approximately a week.
Objectives Head and neck squamous cell carcinoma (HNSCC) shows a remarkable heterogeneity between tumors, which may be captured by a variety of quantitative features extracted from diagnostic images, termed radiomics. The aim of this study was to develop and validate MRI-based radiomic prognostic models in oral and oropharyngeal cancer. Materials and Methods Native T1-weighted images of four independent, retrospective (2005–2013), patient cohorts (n = 102, n = 76, n = 89, and n = 56) were used to delineate primary tumors, and to extract 545 quantitative features from. Subsequently, redundancy filtering and factor analysis were performed to handle collinearity in the data. Next, radiomic prognostic models were trained and validated to predict overall survival (OS) and relapse-free survival (RFS). Radiomic features were compared to and combined with prognostic models based on standard clinical parameters. Performance was assessed by integrated area under the curve (iAUC). Results In oral cancer, the radiomic model showed an iAUC of 0.69 (OS) and 0.70 (RFS) in the validation cohort, whereas the iAUC in the oropharyngeal cancer validation cohort was 0.71 (OS) and 0.74 (RFS). By integration of radiomic and clinical variables, the most accurate models were defined (iAUC oral cavity, 0.72 (OS) and 0.74 (RFS); iAUC oropharynx, 0.81 (OS) and 0.78 (RFS)), and these combined models outperformed prognostic models based on standard clinical variables only (p < 0.001). Conclusions MRI radiomics is feasible in HNSCC despite the known variability in MRI vendors and acquisition protocols, and radiomic features added information to prognostic models based on clinical parameters. Key Points • MRI radiomics can predict overall survival and relapse-free survival in oral and HPV-negative oropharyngeal cancer. • MRI radiomics provides additional prognostic information to known clinical variables, with the best performance of the combined models. • Variation in MRI vendors and acquisition protocols did not influence performance of radiomic prognostic models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.