Atmospheric‐pressure dielectric barrier discharge (DBD) in air is investigated for medical applications, especially for skin treatment. When the DBD was tested on mouse skin, a homogeneous discharge accompanied by filamentary microdischarges is observed. For characterization of the homogeneous discharge, averaged plasma parameters (namely electron density and electron velocity distribution function) and gas temperature are determined by optical emission spectroscopy, microphotography and numerical simulation. Chemical kinetics in the active plasma volume and in the afterglow is simulated. Fluxes of biologically useful molecules like nitric oxide (NO) and ozone reaching the treated surface and irradiation by UV photons are determined. Skin biopsy results show that DBD treatment causes no inflammation and no changes in the skin‐collagen.
The inactivation of the Gram‐positive bacteria Staphylococcus epidermidis (ATCC 12228) in its vegetative state was studied in vitro after exposure to cold atmospheric pressure plasma generated by direct dielectric barrier discharge (DBD). Compared to UV radiation at 254 nm, plasma UV emission yielded no significant contribution to bacterial inactivation. Analysis of bacterial growth inhibition revealed a pH dependency on growth media. Yet, measurements combined with numerical simulations excluded the pH shift induced by plasma generated reactive species as the main cause of bacterial inactivation. Scanning electron microscopy (SEM) images showed no alteration of cell walls, while fluorescence microscopy revealed lethal damage to cell membranes even after 1 s treatment. When the cell membrane was already severely damaged, also degradation of the bacterial DNA by plasma treatment was found. We conclude that membrane damage due to reactive oxygen species (ROS) and DNA degradation are the main mechanisms of plasma‐induced bacterial death that is aggregated by milieu acidification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.